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Can one hear the shape of a drum?

Mark Kac 1966 & Gordon, Webb, Wolpert 1992

Drumhead shapes whose vibration frequencies are the same. Same
Dirichlet Laplacian eigenvalues, different domains.
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An inverse spectral problem for (continuous) manifolds

Let M be a Riemannian manifold with boundary ∂M and metric g ,

∆gu =
n∑

j ,k=1

|g(x)|−1/2 ∂

∂x j
(|g(x)|1/2g jk(x)

∂

∂xk
u(x)). (1)

The eigenvalues λj and orthonormal eigenfunctions φj(x) satisfy

(−∆g + q(x))φj(x) = λjφj(x), for x ∈ M,

∂νφj(x) = 0 for x ∈ ∂M.

Inverse problem: Suppose we are given the boundary spectral data(
∂M, (λj , φj |∂M)j=1,2,...

)
(2)

Can we determine (M, g) and q?
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Weighted graph with boundary

We consider a finite graph with vertices
X = G ∪ B and edges E . We call G the
interior nodes and B = ∂G the boundary
nodes.
Weights: gxy for (x , y) ∈ E and µx for
x ∈ X .

Given u : G ∪ ∂G → R define(
∆Gu

)
(x) =

1

µx

∑
y∼x

gxy
(
u(y)− u(x)

)
, x ∈ G , (3)

and (
∂νu
)
(z) =

1

µz

∑
x∼z, x∈G

gxz
(
u(x)− u(z)

)
, z ∈ ∂G . (4)

Combinatorical Laplacian: gxy = 1 and µx = 1.
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Quantum graph vs discrete graph
On quantum graphs:(

− d2

dx2
+ Ve(x)− λ

)
ue = 0, on all edges

u = f , on graph boundary∑
v∈e

ue
′(v) = Cvu(v), on all vertices v

On discrete graphs:

− 1

dv

∑
w∼v

1

ϕe(w , λ)
u(w) +

(
1

dv

∑
w∼v

ϕ′
e(w , λ)

ϕe(w , λ)
+

Cv

dv

)
u(v) = 0, v ∈ G

u(v) = f (v), v ∈ ∂G

u = (ue)e∈E is the solution in the quantum graph iff u is the solution in the
discrete graph. ϕe is a type of eigenfunction on the edge e.
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The inverse spectral problem for a graph

Let (G ∪ ∂G ,E ) be a graph with weights g and µ. Let q : G → R
be a potential function.

The eigenvalues λj and orthonormal eigenfunctions φj(x) satisfy

(−∆G + q(x))φj(x) = λjφj(x), for x ∈ G ,

∂νφj(x) = 0 for x ∈ ∂G .

Inverse problem: Suppose we are given the boundary spectral data(
∂G , (λj , φj |∂G )j=1,2,...,|G |

)
(5)

Can we determine (G ∪ ∂G ,E ) and g , µ and q on G?
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Counterexample for the unique solvability of IP

Two graphs on which the combinatorial Laplacian has the same
eigenvalues and the boundary values of the eigenfunctions. The
white vertices are boundary nodes and the black vertices are
interior nodes (our heat equation paper 2023).
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Definition (Paths and metric)

Let x , y ∈ G ∪ ∂G . A path from x to y is a sequence of vertices
v0, v1, . . . , vJ such that v0 = x , vJ = y and vj ∼ vj+1. The length
of the path is J.

The distance d(x , y) is the minimal length of a path connecting x
and y
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Definition (Extreme point of a set)

Let S ⊂ G . We say a point x0 ∈ S is an extreme point of S , if
there exists z ∈ ∂G such that x0 is the unique nearest point in S
from z .

Figure: Any compact subset of the unit square which has at least two
points has at least two extreme points.
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Two-points condition

We impose the following assumptions on the graph (G , ∂G ,E ).

(1) For any subset S ⊂ G with at least 2 points, there exist at
least two extreme points.

(2) Each boundary vertex is connected to only one interior vertex.

This condition is valid for trees, when all vertices of degree one are
boundary nodes, and for perturbations of the standard lattices.
(Triangular lattice requires (2’))
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Theorem (B.-Isozaki-Lassas-Lu 2023)

Let (G , ∂G ,E , µ, g) and (G ′, ∂G ′,E ′, µ′, g ′) satisfy the Two-points
condition. Let q, q′ be potential functions on G ,G ′.

Assume that ∂G and ∂G ′ can be identified using a bijective map
and the boundary spectral data of these graphs are the same.

Then there is a bijection Φ : G ∪ ∂G → G ′ ∪ ∂G ′ such that

x1 ∼ x2 if and only if Φ(x1) ∼′ Φ(x2).

Moreover, if we use Φ to identify the graphs G and G ′, then

(1) If µ = µ′, then g = g ′ and q = q′.

(2) If q = q′ = 0, then µ = µ′ and g = g ′.

In other words: The observations at the boundary nodes are
enough to determine the structure in the interior of the graph, even
when all of the interior nodes G and the edges E are unknown.
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Any way for testing two-points condition???
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Theorem (B.-Isozaki-Lassas-Lu 2023)

If on the graph (G , ∂G ,E ) there exists h : G ∪ ∂G → R such that

1. If x ∼ y then |h(x)− h(y)| ⩽ 1,

2. |N±(x)| = 1 for all x ∈ G, and |N±(z)| ⩽ 1 for all z ∈ ∂G,
where

N+(x) = {y ∈ G ∪ ∂G : y ∼ x , h(y) = h(x) + 1},
N−(x) = {y ∈ G ∪ ∂G : y ∼ x , h(y) = h(x)− 1},

then (G , ∂G ,E ) satisfy the Two-Points Condition.

We call N+(x) the discrete gradient of h at x, and N−(x) the
discrete gradient of −h at x.
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Graphs satisfying the Two Points Condition

Figure: Finite hexagonal lattice. The white vertices are considered to be
the boundary vertices for the set of the blue (interior) vertices.
Also, any horizontal edges can be removed.
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Graphs satisfying the Two Points Condition
Following graphs satisfy the Two Points Condition when suitable
connections to the boundary vertices are removed.
The white vertices are the boundary vertices; the blue vertices are
the interior vertices.

Figure: Finite two-level square
ladder, made out of two layers of
square lattices.

Figure: Finite triangular lattice.
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Preparing for the proof

Theorem
Boundary spectral data determines the structure (which points
connected to which).

Tools and interesting facts:

▶ (Operators) With x ∈ G , z ∈ ∂G(
∆Gu

)
(x) =

1

µx

∑
y∼x

gxy
(
u(y)− u(x)

)
(
∂νu
)
(z) =

1

µz

∑
x∼z, x∈G

gxz
(
u(x)− u(z)

)
▶ (Green’s formula) Given u, v : G ∪ ∂G → R∑

G

µ(u1∆Gu2 − u2∆Gu1) =
∑
∂G

µ(u2∂νu1 − u1∂νu2)
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More tools and interesting facts

▶ (Eigenfunction behaviour) If the graph satisfies the two-points
condition then eigenfunctions of −∆G + q cannot have both
u = 0 and ∂νu = 0 on ∂G .

▶ (N-D ↔ spectral data) If (−∆G + q)ufλ = λufλ on G and
∂νu

f
λ = f on ∂G then

ufλ − w f =−
N∑

k=1

1

λ− λk

(∑
z∈∂G

µzϕz(z)f (z)

)

−
N∑

k=1

〈
w f , ϕk

〉
L2(G)

ϕk

for any w f : G ∪ ∂G → R with ∂νw
f = f on ∂G . Poles of

Λλf = ufλ given spectrum. Boundary values follow from
residues.
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Topology from spectral data: proof idea

Lemma
Suppose W is the initial value of some wave u satisfying the wave
equation

Dttu(x , t)−∆Gu(x , t) + q(x)u(x , t) = 0, x ∈ G , t ⩾ 1,

∂νu(x , t) = 0, x ∈ ∂G , t ⩾ 0,

Dtu(x , 0) = 0, x ∈ G ,

u(x , 0) = W (x), x ∈ G ∪ ∂G ,

(6)

Then the spectral data and the Fourier coefficients Ŵ , Ŵ0 of the
initial values W ,W0 determine

▶ the boundary values u(z , t), z ∈ ∂G, t ⩾ 0,

▶ inner products ⟨u(·, t),W0⟩,
Here

Ŵ (j) := ⟨W , φj⟩ :=
∑
x∈G

µxW (x)φj(x).
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Topology from spectral data: proof idea

Associate any vertex x0 ∈ G with the initial value Wx0 ,

Wx0(x) = δx0(x), x ∈ G .

Let A0 be the set of all initial values W which are supported at a
single point in G .

Then the boundary spectral data determines the Fourier
coefficients of elements of A0, i.e.

Â0 = {Ŵx : x ∈ G}

is determined.
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Â0 = {Ŵx : x ∈ G}

is determined.

Emilia Bl̊asten, LUT University 20/23



Topology from spectral data: proof idea

Associate any vertex x0 ∈ G with the initial value Wx0 ,

Wx0(x) = δx0(x), x ∈ G .

Let A0 be the set of all initial values W which are supported at a
single point in G .

Then the boundary spectral data determines the Fourier
coefficients of elements of A0, i.e.
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Topology from spectral data: edge determination

Lemma
Let G be a finite weighted graph with boundary satisfying the
two-point condition, and x , y ∈ G. Then x ∼ y if and only if

min
{
t ∈ N

∣∣ ⟨uWx (·, t),Wy ⟩ ≠ 0
}
= 2. (7)

We can now identify points x , y ∈ G with Fourier coefficients
Ŵx , Ŵy of single point initial values Wx ,Wy . And we can use
these to determine when ⟨uWx (·, t),Wy ⟩ ≠ 0.

The boundary spectral data determines if x ∼ y .
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}
= 2. (7)

We can now identify points x , y ∈ G with Fourier coefficients
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Coefficient determination

For (i), i.e. µ is known

, we determine gxy by

⟨(−∆G + q)Wx ,Wy ⟩ = −Wy (y)
∑
p∼y

gypWx(p) (8)

whose LHS is uniquely determined by the boundary spectral data:

Wx =
∑
j

⟨Wx , φj⟩φj , Wy =
∑
j

⟨Wy , φj⟩φj ,

⟨Wx , φj⟩ = ⟨Wx , φ
′
j⟩′, (−∆G + q)φj = λjφj .

Similar arguments applied to ⟨(−∆G + q)Wx ,Wx⟩ determine q.

For (ii), i.e. when q = 0, there is an eigenvalue such that λ0 = 0
and φ0 = c .Then

µx = ⟨Wx , φ0⟩2c−2 (9)

is determined by the boundary spectral data.
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Thank you!
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