Scattering from corners and other singularities

Emilia Blåsten

LUT University, Finland

Finnish Mathematical Days 2024 Aalto University January 5, 2024

Scattering theory

Fixed frequency scattering

The total wave u satisfies

$$(\Delta + k^2(1+V))u = 0,$$

V models a perturbation of the background,

$$u = u^{i}(x) + u^{s}(x)$$
incident wave scattered wave

Scattering theory

=

 $u = u^i + u^s$

Fixed frequency scattering theory: measurements

Measurement: A_{u^i} is the far-field pattern of the scattered wave

$$u^{s}(x) = \frac{e^{ik|x|}}{|x|^{(n-1)/2}} A_{u^{i}}\left(\frac{x}{|x|}\right) + \mathcal{O}\left(\frac{1}{|x|^{n/2}}\right)$$

Different inverse scattering problems

Given the far-field map $u^i \mapsto A_{u^i}$, recover the scattering potential V or its support Ω .

Different inverse scattering problems

Given the far-field map $u^i \mapsto A_{u^i}$, recover the scattering potential V or its support Ω .

Solved when

- ▶ full far-field map given for all large frequencies (Saito 1984)
- full far-field map given for a single frequency
 - > Sylvester–Uhlmann 1987: 3D Calderón problem
 - ▷ R. Novikov 1988: 3D scattering
 - ▷ Bukhgeim 2007: 2D scattering
- + countless other variations

Different inverse scattering problems

Given the far-field map $u^i \mapsto A_{u^i}$, recover the scattering potential V or its support Ω .

Solved when

- ▶ full far-field map given for all large frequencies (Saito 1984)
- ▶ full far-field map given for a single frequency
 - ▷ Sylvester–Uhlmann 1987: 3D Calderón problem
 - ▷ R. Novikov 1988: 3D scattering
 - ▷ Bukhgeim 2007: 2D scattering
- + countless other variations

My focus is on single measurement: A_{u^i} given only for a single u^i .

Schiffer's problem: can a single measurement determine Ω ?

Example: Lord Rutherford's gold-foil experiment

Example: Lord Rutherford's gold-foil experiment

Example: Lord Rutherford's gold-foil experiment

Example: Lord Rutherford's gold-foil experiment

Single incident wave

Scattering theory

Rutherford experiment's conclusions

measurement + a-priori information = conclusion

It is very unfortunate if the far-field map is not injective. Most scattering potentials do have interior transmission eigenvalues. These exist when the map is non-injective. So it looks like the situation is unfortunate?

It is very unfortunate if the far-field map is not injective. Most scattering potentials do have interior transmission eigenvalues. These exist when the map is non-injective. So it looks like the situation is unfortunate?

Theorem (B.–Päivärinta–Sylvester CMP 2014)

The potential $V = \chi_{[0,\infty[^n} \varphi, \ \varphi(0) \neq 0$ always scatters.

It is very unfortunate if the far-field map is not injective. Most scattering potentials do have interior transmission eigenvalues. These exist when the map is non-injective. So it looks like the situation is unfortunate?

Theorem (B.–Päivärinta–Sylvester CMP 2014)

The potential $V = \chi_{[0,\infty[^n}\varphi, \varphi(0) \neq 0$ always scatters.

For any incident wave $u^i \neq 0$ and wavenumber k > 0 we have $A_{u^i} \neq 0$. The far-field map is injective despite there being transmission eigenvalues!

It is very unfortunate if the far-field map is not injective. Most scattering potentials do have interior transmission eigenvalues. These exist when the map is non-injective. So it looks like the situation is unfortunate?

Theorem (B.–Päivärinta–Sylvester CMP 2014) The potential $V = \chi_{[0,\infty[^n}\varphi, \varphi(0) \neq 0 \text{ always scatters.}$

For any incident wave $u^i \neq 0$ and wavenumber k > 0 we have $A_{u^i} \neq 0$. The far-field map is injective despite there being transmission eigenvalues!

However, if k is a transmission eigenvalue A_{u^i} can become arbitrarily small with $||u^i|| \ge 1$.

Proof sketch

Rellich's theorem and unique continuation imply $u = u^i$ in Ω^{\complement} so

$$k^{2}\int Vu^{i}u_{0}dx = -\int_{\Omega}u_{0}(\Delta + k^{2}(1+V))(u-u^{i})dx = 0$$

 $\text{if } (\Delta + k^2(1+V))u_0 = 0 \text{ in } \Omega.$

Proof sketch

Rellich's theorem and unique continuation imply $u = u^i$ in Ω^{\complement} so

$$k^{2}\int Vu^{i}u_{0}dx = -\int_{\Omega}u_{0}(\Delta + k^{2}(1+V))(u-u^{i})dx = 0$$

if $(\Delta + k^2(1 + V))u_0 = 0$ in Ω . In simple case

$$u^{i}(x) = u^{i}(0) + u^{i}_{r}(x)$$

$$u_{0}(x) = e^{\rho \cdot x} (1 + \psi(x))$$

$$V(x) = \chi_{[0,\infty[^{n}]}(x)(\varphi(0) + \varphi_{r}(x))$$

Proof sketch

Rellich's theorem and unique continuation imply $u = u^i$ in Ω^{\complement} so

$$k^{2}\int Vu^{i}u_{0}dx = -\int_{\Omega}u_{0}(\Delta + k^{2}(1+V))(u-u^{i})dx = 0$$

if $(\Delta + k^2(1 + V))u_0 = 0$ in Ω . In simple case

$$u^{i}(x) = u^{i}(0) + u^{i}_{r}(x)$$

$$u_{0}(x) = e^{\rho \cdot x} (1 + \psi(x))$$

$$V(x) = \chi_{[0,\infty[^{n}]}(x)(\varphi(0) + \varphi_{r}(x))$$

Hölder estimates give

$$C\left|\varphi(0)u^{i}(0)\right|\left|\rho\right|^{-n} \leq \left|\varphi(0)u^{i}(0)\int_{[0,\infty[^{n}]}e^{\rho\cdot x}dx\right| \leq C\left|\rho\right|^{-n-\delta}$$

$$\text{if } \|\psi\|_{p} \leq C \left|\rho\right|^{-n/p-\varepsilon}.$$

Some follow-up corner scattering results by others

- Päivärinta–Salo–Vesalainen 2017: 2D any angle, 3D almost any spherical cone
- Hu–Salo–Vesalainen 2016: smoothness reduction, new arguments, polygonal scatterer probing
- Elschner–Hu 2015, 2018: 3D any domain having two faces meet at an angle, and also curved edges
- ▶ Liu–Xiao 2017: electromagnetic waves
- • •
- free boundary methods:
 - ▷ Cakoni–Vogelius 2021: border singularities
 - ▷ Salo–Shahgholian 2021: analytic boundary non-scattering
 - ▷ ...

Lower bound for far-field pattern

Arbitrary Herglotz wave

Theorem (B.–Liu 2017) Let uⁱ be a normalized Herglotz wave,

$$u^{i}(x) = \int_{\mathbb{S}^{n-1}} e^{ik\theta \cdot x} g(\theta) d\sigma(\theta), \qquad \|g\|_{L^{2}(\mathbb{S}^{n-1})} = 1,$$

and let $V = \chi_P \varphi$ be admissible with x_c a corner of P. Then

$$\|A_{u^i}\|_{L^2(\mathbb{S}^{n-1})} \ge C_{\|P_N\|,V} > 0$$

where

$$u^{i}(x_{c}+r\theta) = r^{N}P_{N}(\theta) + \mathcal{O}(r^{N+1}),$$
$$\|P_{N}\| = \int_{\mathbb{S}^{n-1}} |P_{N}(\theta)| \, d\sigma(\theta) > 0.$$

Mistake?

F. Cakoni: "Incident waves that approximate transmission eigenfunctions produce arbitrarily small far-field patterns." From apparent contradiction to inspiration

Theorem (B.-Liu 2017)

Let the potential $V = \chi_{\Omega} \varphi$ be admissible. Let $v, w \neq 0$ be transmission eigenfunctions:

$$egin{aligned} & (\Delta+k^2)v=0, & \Omega\ & (\Delta+k^2(1+V))w=0, & \Omega\ & w-v\in H^2_0(\Omega). \end{aligned}$$

Under C^{α} -smoothness of v near a convex corner x_c we have

$$v(x_c)=w(x_c)=0.$$

Transmission eigenfunction localization

B.-Li-Liu-Wang 2017

Technically simpler than potential scattering: inverse source problem

$$(\Delta + k^2)u = f,$$
 $\lim_{r \to \infty} (\partial_r - ikr) u = 0$

Can one have $f \neq 0$ but $u_{\infty} = 0$?

Technically simpler than potential scattering: inverse source problem

$$(\Delta + k^2)u = f,$$
 $\lim_{r \to \infty} (\partial_r - ikr) u = 0$

Can one have $f \neq 0$ but $u_{\infty} = 0$? Recall:

$$u_{\infty}(\theta) = c_{k,n}\hat{f}(k\theta).$$

I.e. can a compactly supported function have Fourier transform vanishing on a sphere?

Technically simpler than potential scattering: inverse source problem

$$(\Delta + k^2)u = f,$$
 $\lim_{r \to \infty} (\partial_r - ikr) u = 0$

Can one have $f \neq 0$ but $u_{\infty} = 0$? Recall:

$$u_{\infty}(\theta) = c_{k,n}\hat{f}(k\theta).$$

I.e. can a compactly supported function have Fourier transform vanishing on a sphere?

Yes: let

$$f(x) = \begin{cases} 1, & |x| < r_0 \\ 0, & |x| \ge r_0 \end{cases}$$

where $r_0 > 0$.

Technically simpler than potential scattering: inverse source problem

$$(\Delta + k^2)u = f,$$
 $\lim_{r \to \infty} (\partial_r - ikr) u = 0$

Can one have $f \neq 0$ but $u_{\infty} = 0$? Recall:

$$u_{\infty}(\theta) = c_{k,n}\hat{f}(k\theta).$$

I.e. can a compactly supported function have Fourier transform vanishing on a sphere?

Yes: let

$$f(x) = \begin{cases} 1, & |x| < r_0 \\ 0, & |x| \ge r_0 \end{cases}$$

where $r_0 > 0$. Then

$$u_{\infty}(\theta) = c_{k,n}\hat{f}(k\theta) = c'_{k,n}J_{n/2}(kr_0) = 0$$

if kr_0 is a zero of the Bessel function of order n/2.

Always scattering Smallness 1/2

A small uniform ball always scatters!

Always scattering Smallness 1/2

A small uniform ball always scatters!

Also: any source with small shape always scatters!

Theorem (B.–Liu, 2021)

Let $n \geq 2$, $R_m, k \in \mathbb{R}_+$, $0 \leq \alpha \leq 1$. Let $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain of diameter at most R_m and whose complement is connected. Let Ω_c be a component of Ω . The source $f = \chi_\Omega \varphi$ radiates a non-zero far-field pattern at wavenumber k if

$$\left(\operatorname{\mathsf{diam}}(\Omega_c)
ight)^lpha \leq C rac{\sup_{\partial\Omega_c} |arphi|}{\left\|arphi
ight\|_{\mathcal{C}^lpha(\overline{\Omega}_c)}},$$

for some $C = C(k, R_m, n) > 0$.

Smallness 2/2: Proof

Suppose
$$(\Delta + k^2)u = \chi_{\Omega}\varphi$$
 and $u_{\infty} = 0$. Then $u_{|\Omega^{\complement}} = 0$, so $u_{|\Omega_c} \in H^2_0(\Omega_c)$ and $(\Delta + k^2)u = \varphi$ in Ω_c .

Smallness 2/2: Proof

Suppose $(\Delta + k^2)u = \chi_{\Omega}\varphi$ and $u_{\infty} = 0$. Then $u_{|\Omega^{\complement}} = 0$, so $u_{|\Omega_c} \in H^2_0(\Omega_c)$ and $(\Delta + k^2)u = \varphi$ in Ω_c . Set $g = \varphi - k^2 u$. Elliptic regularity implies $g \in C^{\alpha}(\overline{\Omega}_c)$ with $\|g\|_{\alpha} \leq C(n, k, R_m) \|\varphi\|_{\alpha}$. Moreover $g = \Delta u$ and so

$$\int_{\Omega_c} g(x) dx = \int_{\Omega_c} 1 \cdot \Delta u dx = 0$$

because $u = \partial_{\nu} u = 0$ in $\partial \Omega_c$.

Smallness 2/2: Proof

Suppose $(\Delta + k^2)u = \chi_{\Omega}\varphi$ and $u_{\infty} = 0$. Then $u_{|\Omega^{\complement}} = 0$, so $u_{|\Omega_c} \in H^2_0(\Omega_c)$ and $(\Delta + k^2)u = \varphi$ in Ω_c . Set $g = \varphi - k^2 u$. Elliptic regularity implies $g \in C^{\alpha}(\overline{\Omega}_c)$ with $\|g\|_{\alpha} \leq C(n, k, R_m) \|\varphi\|_{\alpha}$. Moreover $g = \Delta u$ and so

$$\int_{\Omega_c} g(x) dx = \int_{\Omega_c} 1 \cdot \Delta u dx = 0$$

because $u = \partial_{\nu} u = 0$ in $\partial \Omega_c$. Let $p \in \partial \Omega_c$. Then

$$\varphi(p)m(\Omega_c) = g(p)m(\Omega_c) = -\int_{\Omega_c} (g(x) - g(p))dx$$

Smallness 2/2: Proof

Suppose $(\Delta + k^2)u = \chi_{\Omega}\varphi$ and $u_{\infty} = 0$. Then $u_{|\Omega^{\complement}} = 0$, so $u_{|\Omega_c} \in H^2_0(\Omega_c)$ and $(\Delta + k^2)u = \varphi$ in Ω_c . Set $g = \varphi - k^2 u$. Elliptic regularity implies $g \in C^{\alpha}(\overline{\Omega}_c)$ with $\|g\|_{\alpha} \leq C(n, k, R_m) \|\varphi\|_{\alpha}$. Moreover $g = \Delta u$ and so

$$\int_{\Omega_c} g(x) dx = \int_{\Omega_c} 1 \cdot \Delta u dx = 0$$

because $u = \partial_{\nu} u = 0$ in $\partial \Omega_c$. Let $p \in \partial \Omega_c$. Then

$$\varphi(p)m(\Omega_c) = g(p)m(\Omega_c) = -\int_{\Omega_c} (g(x) - g(p))dx$$

Hence

$$|\varphi(p)| m(\Omega_c) \leq \|g\|_{\alpha} \int_{\Omega_c} |x-p|^{\alpha} dx \leq \|g\|_{\alpha} m(\Omega_c) (\operatorname{diam}(\Omega_c))^{\alpha}.$$

Inverse source problem, Schiffer's problem

$$(\Delta + k^2)u = f = \chi_{\Omega}\varphi, \qquad \lim_{r \to \infty} (\partial_r - ikr)u = 0$$

Can $u_{\infty}(\theta) = c\hat{f}(k\theta)$ determine Ω when k is fixed?

Inverse source problem, Schiffer's problem

$$(\Delta + k^2)u = f = \chi_{\Omega}\varphi, \qquad \lim_{r \to \infty} (\partial_r - ikr)u = 0$$

Can $u_{\infty}(\theta) = c\hat{f}(k\theta)$ determine Ω when k is fixed?

Unique determination:

- u_∞ = u'_∞ ⇒ Ω = Ω' for convex polyhedral shapes (corner scattering). Assuming non-vanishing total waves, also for elasticity (B.–Lin 2018), electromagnetism (B.–Liu–Xiao 2021),
- u_∞ = u'_∞ ⇒ Ω ≈ Ω' for convex polyhedral shapes whose corners have been smoothened to admissible K-curvature points (high curvature scattering, B.–Liu 2021),
- u_∞ = u'_∞ ⇒ Ω ≈ Ω' for well-separated collections of small scatterers (small source scattering, B.–Liu 2021).

Non-spherical cones

Potential scattering

Let C be any cone whose cross-section K is star-shaped and $\chi_K \in H^{\tau}(\mathbb{R}^2)$ for some $\tau > 1/2$.

Theorem (B.–Pohjola 2022)

For any $\delta > 0$ there is a cone C_{δ} such that $d_H(C_{\delta}, C) < \delta$ and with the following property: potentials of the form

$$V = \chi_{C_{\delta}}\varphi$$

where φ is smooth enough (roughly $C^{1/4}$) and non-zero at the vertex always scatter.

Non-spherical cones

Source scattering (easier)

Theorem (B.–Pohjola 2022)

A source $f = \chi_C \varphi$ for $(\Delta + k^2)u = f$ scatters for any k > 0 when φ is smooth enough and non-zero at the vertex of the cone C when

$$\int_{\mathbb{S}^2\cap C} Y_2^m dS \neq 0$$

for $m \in \{-2, -1, 0, +1, +2\}$ and Y_2^m is the spherical harmonic of degree 2. This is true if C fits into a thin enough spherical cone.

Non-spherical cones

Source scattering (easier)

Theorem (B.–Pohjola 2022)

A source $f = \chi_C \varphi$ for $(\Delta + k^2)u = f$ scatters for any k > 0 when φ is smooth enough and non-zero at the vertex of the cone C when

$$\int_{\mathbb{S}^2\cap C} Y_2^m dS \neq 0$$

for $m \in \{-2, -1, 0, +1, +2\}$ and Y_2^m is the spherical harmonic of degree 2. This is true if C fits into a thin enough spherical cone. "Thin enough" means $\cos \theta \leq 1/\sqrt{3}$. The magic angle is $\approx 54.74^{\circ}$.

Scattering screens

A flat screen $\Omega = \Omega_0 \times \{0\}$ with $\Omega_0 \subset \mathbb{R}^2$ simply connected, bounded and smooth. Scattering from such a screen:

$$egin{aligned} & (\Delta+k^2)u^s=0, & & \mathbb{R}^3\setminus\overline{\Omega}, \ & & u^i+u^s=0, & & \Omega, \ & & r(\partial_r-ik)u^s o 0, & & r=|x| o\infty. \end{aligned}$$

Let Ω, Ω' be flat screens, k > 0, u^i an arbitary incident wave, and $u^s, u^{s'}$ corresponding scattered waves.

Theorem (B.–Päivärinta–Sadique 2020)

• If $u^i(x_1, x_2, x_3) + u^i(x_1, x_2, -x_3) \neq 0$ for some x and $u^s_{\infty} = u^{s'}_{\infty}$ then $\Omega = \Omega'$.

• If
$$u^i(x_1, x_2, x_3) + u^i(x_1, x_2, -x_3) = 0$$
 for all x then $u^s_{\infty} = u^{s'}_{\infty} = 0$.

Thank you!