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Scattering theory
Fixed frequency scattering

V (x)

ui(x)

us(x)

The total wave u satisfies(
∆ + k2(1 + V )

)
u = 0,

V models a perturbation of the background,

u = ui(x)

incident wave

+ us(x)

scattered wave
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Scattering theory

=

+

u = ui + us
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Fixed frequency scattering theory: measurements

Measurement: Aui is the far-field pattern of the scattered wave

us(x) = eik|x |

|x |(n−1)/2 Aui

( x
|x |

)
+ O

(
1

|x |n/2

)
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Different inverse scattering problems

Given the far-field map ui 7→ Aui , recover the scattering potential
V or its support Ω.

Solved when
▶ full far-field map given for all large frequencies (Saito 1984)
▶ full far-field map given for a single frequency

▷ Sylvester–Uhlmann 1987: 3D Calderón problem
▷ R. Novikov 1988: 3D scattering
▷ Bukhgeim 2007: 2D scattering

▶ + countless other variations

My focus is on single measurement: Aui given only for a single ui .

Schiffer’s problem: can a single measurement determine Ω?
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Why one measurement only?

Example: Lord Rutherford’s gold-foil experiment

Single incident wave
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Scattering theory
Rutherford experiment’s conclusions

measurement + a-priori information = conclusion
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Sampling methods

▶ 96 Colton – Kirsh: linear sampling method (points)
▶ 98 Ikehata: probing method (curve)
▶ . . . Luke, Potthast, Sylvester, Kusiak: range test, no response

test (sets)
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Factorization method
Most sampling methods gave only sufficient conditions for
x ∈ supp V . Kirsch 90’s, Grinberg 00’s: factorization method.
Gives necessary and sufficient conditions.
Idea:

ui(x) =
∫
Sn−1

eikθ·xg(θ)dσ(θ), g ∈ L2(Sn−1)

us(x) = eik|x |

|x |(n−1)/2 Ag

( x
|x |

)
+ O

(
1

|x |n/2

)
the far-field operator

F : L2(Sn−1) → L2(Sn−1), Fg = Ag

is factored as
F = G T G∗

G compact, T isomorphism. The range of G can be characterized
and gives information about supp V .
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No scattering implies k2 ITE

Let ui be the incident wave and assume a zero far-field: Aui = 0.

Rellich’s lemma and unique continuation imply us(x) = 0 for
x ∈ Ω = Rn \ supp V .

(∆ + k2)ui = 0, Ω
(∆ + k2(1 + V ))(ui + us) = 0, Ω

us ∈ H2
0 (Ω),

so v = ui and u = ui + us solve the interior transmission problem.
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Fundamental research into ITE
▶ 86’, 88’ Kirsch, Colton–Monk: ITE problem posed
▶ 89’, 91’ Colton–Kirsch–Päivärinta, Rynne–Sleeman:

discreteness of ITE
▶ 91’–08’ nothing. . .
▶ 07’, 09’ Cakoni–Colton–Monk, Cakoni–Colton–Haddar:

qualitative information about V from ITE’s
▶ 08’ Päivärinta–Sylvester: existence for general scatterers
▶ 10’ Cakoni–Gintides–Haddar: infinitely many ITE’s
▶ 10’ Cakoni–Colton–Haddar: ITE’s can be deduced from

far-field data
▶ 11’ Hitrik–Krupchyk–Ola–Päivärinta: bounds on location

of complex ITE’s
▶ 10’+: explosion of interest
▶ ∼2016: interest started shifting to “Steklov eigenvalues”

http://www.maths.dur.ac.uk/lms/104/talks/1092monk.pdf
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Interior transmission eigenvalues VS sampling methods

Recall: Aui = 0, ui ̸= 0 =⇒ k2 ITE

Sampling method users avoid ITE’s. They rely on the far-field map
being injective.

Are they too careful?
▶ Colton–Monk 88: supp V compact, V radial, k2 ITE

=⇒ ∃ui ̸= 0, Aui = 0
▶ Regge, Newton, Sabatier, Grinevich, Manakov, Novikov

50’s – 90’s: radial potentials transparent at a fixed k2 i.e.
=⇒ Aui = 0 ∀ui
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What if the measurement gives nothing?

It is very unfortunate if the far-field map is not injective. Most
scattering potentials do have interior transmission eigenvalues.
These exist when the map is non-injective. So it looks like the
situation is unfortunate?

Theorem (B.–Päivärinta–Sylvester CMP 2014)
The potential V = χ[0,∞[nφ, φ(0) ̸= 0 always scatters.

For any incident wave ui ̸= 0 and wavenumber k > 0 we have
Aui ̸= 0. The far-field map is injective despite there being

transmission eigenvalues!

However, if k is a transmission eigenvalue Aui can become
arbitrarily small with ∥ui∥ ≥ 1.
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Proof sketch
Rellich’s theorem and unique continuation imply u = ui in Ω∁ so

k2
∫

Vuiu0dx = −
∫

Ω
u0
(
∆ + k2(1 + V )

)
(u − ui)dx = 0

if (∆ + k2(1 + V ))u0 = 0 in Ω.
In simple case

ui(x) = ui(0) + ui
r (x)

u0(x) = eρ·x (1 + ψ(x))
V (x) = χ[0,∞[n(x)(φ(0) + φr (x))

Hölder estimates give

C
∣∣∣φ(0)ui(0)

∣∣∣ |ρ|−n ≤
∣∣∣∣∣φ(0)ui(0)

∫
[0,∞[n

eρ·xdx
∣∣∣∣∣ ≤ C |ρ|−n−δ

if ∥ψ∥p ≤ C |ρ|−n/p−ε.
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Some follow-up corner scattering results by others

▶ Päivärinta–Salo–Vesalainen 2017: 2D any angle, 3D almost
any spherical cone

▶ Hu–Salo–Vesalainen 2016: smoothness reduction, new
arguments, polygonal scatterer probing

▶ Elschner–Hu 2015, 2018: 3D any domain having two faces
meet at an angle, and also curved edges

▶ Liu–Xiao 2017: electromagnetic waves
▶ . . .
▶ free boundary methods:

▷ Cakoni–Vogelius 2021: border singularities
▷ Salo–Shahgholian 2021: analytic boundary non-scattering
▷ . . .
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Injectivity of the Schiffer’s problem for polyhedra

Theorem (Hu–Salo–Vesalainen, Elschner–Hu)
Let P,P ′ be convex polyhedra and V = χPφ, V ′ = χP′φ′ for
admissible functions φ,φ′. Then

P ̸= P ′ =⇒ Aui ̸= A′
ui ∀ui ̸= 0

Any single incident wave determines P in the class of polyhedral
penetrable scatterers.
Ikehata’s enclosure method (1999) gives roughly the same!
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Stability of polygonal scatterer probing
Non-vanishing total wave

Theorem (B.–Liu 2021)
Let ui be an incident wave and let V = χPφ, V ′ = χP′φ′ be
admissible with |u| , |u′| ≠ 0. Then

dH(P,P ′) ≤ C(ln ln
∥∥Aui − A′

ui
∥∥−1

2 )−η

for some η > 0.
Note 1: stability is still unknown without assuming |u| , |u′| ≠ 0.
Note 2: is this the optimal stability??
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Lower bound for far-field pattern
Arbitrary Herglotz wave

Theorem (B.–Liu 2017)
Let ui be a normalized Herglotz wave,

ui(x) =
∫
Sn−1

eikθ·xg(θ)dσ(θ), ∥g∥L2(Sn−1) = 1,

and let V = χPφ be admissible with xc a corner of P. Then

∥Aui ∥L2(Sn−1) ≥ C∥PN∥,V > 0

where

ui(xc + rθ) = rNPN(θ) + O(rN+1),

∥PN∥ =
∫
Sn−1

|PN(θ)| dσ(θ) > 0.
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Mistake?

F. Cakoni: “Incident waves that approx-
imate transmission eigenfunctions pro-
duce arbitrarily small far-field patterns.”
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From apparent contradiction to inspiration

Theorem (B.–Liu 2017)
Let the potential V = χΩφ be admissible. Let v ,w ̸= 0 be
transmission eigenfunctions:

(∆ + k2)v = 0, Ω
(∆ + k2(1 + V ))w = 0, Ω

w − v ∈ H2
0 (Ω).

Under Cα-smoothness of v near a convex corner xc we have

v(xc) = w(xc) = 0.
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Transmission eigenfunction localization

B.–Li–Liu–Wang 2017
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Piecewise constant determination

Injectivity of piecewise constant potential probing:

Theorem (B., Liu, 2020)
Let Σj , j = 1, 2, . . . be bounded convex polyhedra in an admissible
geometric arrangement (think pixels/voxels) and V =

∑
j VjχΣj ,

V ′ =
∑

j V ′
j χΣj for constants Vj ,V ′

j ∈ C. Then

V ̸= V ′ =⇒ Aui ̸= A′
ui ∀ui(x) = eikθ·x

if k > 0 small or |u| + |u′| ≠ 0 at each vertex.

A single incident plane wave determines V in the class of
discretized penetrable scatterers if the grid is unknown but same
for both V and V ′.
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Proof sketch
Integration by parts

k2
∫

Ω
(V − V ′)u′u0dx =

∫
∂Ω

(
(u − u′)∂νu0 − u0∂ν(u − u′)

)
dx

if (∆ + k2(1 + V ))u0 = 0 in Ω.
Simple case: Ω = B(0, ε) ∩ Σj with Σj = ]0, 1[n

u′(x) = u′(0) + u′
r (x) u′ ∈ H2 ↪→ C1/2

u0(x) = eρ·x (1 + ψ(x)) CGO
(V − V ′)(x) = Vj − V ′

j piecewise constant

Hölder estimates give

C
∣∣∣(Vj − V ′

j )u′(0)
∣∣∣ |ρ|−n =

∣∣∣∣∣(Vj − V ′
j )u′(0)

∫
Rn

+

eρ·xdx
∣∣∣∣∣ ≤ C |ρ|−n−δ

if ∥ψ∥p ≤ C |ρ|−n/p−ε.
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Generalizations and limitations
▶ unique determination of corner location and value
▶ if Σj might be different for V ,V ′: both (Σj)∞

j=1 and
V =

∑
j VjχΣj uniquely determined by a single measurement if

geometry known to be nested

Σ1

Σ2

Σ3

▶ method cannot yet be shown to distinguish between

V1 V2

V3 V4

V ′
1

V ′
2 V ′

3

V ′
4
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Always scattering
High curvature case

Ω bounded domain, 0 ∈ ∂Ω admissible
K -curvature point.

Theorem (B.–Liu, 2021)
If f = χΩφ, φ ∈ Cα(Rn) and

|φ(0)| ≥ C(ln K )(n+3)/2K−δ

then u∞ ̸= 0 for (∆ + k2)u = f .
h

b

Ω

0

Ωb,h
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Non-scattering
Technically simpler: inverse source problem

(∆ + k2)u = f , lim
r→∞

(∂r − ikr) u = 0

Can one have f ̸= 0 but u∞ = 0?
Recall:

u∞(θ) = ck,n f̂ (kθ).

I.e. can a compactly supported function have Fourier transform
vanishing on a sphere?
Yes: let

f (x) =
{

1, |x | < r0

0, |x | ≥ r0

where r0 > 0. Then

u∞(θ) = ck,n f̂ (kθ) = c ′
k,nJn/2(kr0) = 0

if kr0 is a zero of the Bessel function of order n/2.
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Always scattering
Smallness 1/2

A small uniform ball always scatters!

Also: any source with small shape always scatters!

Theorem (B.–Liu, 2021)
Let n ≥ 2, Rm, k ∈ R+, 0 ≤ α ≤ 1. Let Ω ⊂ Rn be a bounded
Lipschitz domain of diameter at most Rm and whose complement
is connected. Let Ωc be a component of Ω. The source f = χΩφ
radiates a non-zero far-field pattern at wavenumber k if

(
diam(Ωc)

)α ≤ C
sup∂Ωc |φ|
∥φ∥Cα(Ωc)

,

for some C = C(k,Rm, n) > 0.
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Always scattering
Smallness 2/2: Proof

Suppose (∆ + k2)u = χΩφ and u∞ = 0. Then u|Ω∁ = 0, so
u|Ωc ∈ H2

0 (Ωc) and (∆ + k2)u = φ in Ωc .
Set g = φ− k2u. Elliptic regularity implies g ∈ Cα(Ωc) with
∥g∥α ≤ C(n, k,Rm) ∥φ∥α. Moreover g = ∆u and so∫

Ωc
g(x)dx =

∫
Ωc

1 · ∆udx = 0

because u = ∂νu = 0 in ∂Ωc . Let p ∈ ∂Ωc . Then

φ(p)m(Ωc) = g(p)m(Ωc) = −
∫

Ωc

(
g(x) − g(p)

)
dx

Hence

|φ(p)| m(Ωc) ≤ ∥g∥α

∫
Ωc

|x − p|α dx ≤ ∥g∥α m(Ωc)
(

diam(Ωc)
)α
.
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Inverse source problem, Schiffer’s problem

(∆ + k2)u = f = χΩφ, lim
r→∞

(∂r − ikr)u = 0

Can u∞(θ) = cf̂ (kθ) determine Ω when k is fixed?

Unique determination:
▶ u∞ = u′

∞ =⇒ Ω = Ω′ for convex polyhedral shapes (corner
scattering). Assuming non-vanishing total waves, also for
elasticity (B.–Lin 2018), electromagnetism (B.–Liu–Xiao
2021),

▶ u∞ = u′
∞ =⇒ Ω ≈ Ω′ for convex polyhedral shapes whose

corners have been smoothened to admissible K -curvature
points (high curvature scattering, B.–Liu 2021),

▶ u∞ = u′
∞ =⇒ Ω ≈ Ω′ for well-separated collections of small

scatterers (small source scattering, B.–Liu 2021).
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Non-spherical cones
Potential scattering

Let C be any cone whose cross-section K is star-shaped and
χK ∈ Hτ (R2) for some τ > 1/2.

Theorem (B.–Pohjola 2022)
For any δ > 0 there is a cone Cδ such that dH(Cδ,C) < δ and with
the following property: potentials of the form

V = χCδ
φ

where φ is smooth enough (roughly C1/4) and non-zero at the
vertex always scatter.
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Non-spherical cones
Source scattering (easier)

Theorem (B.–Pohjola 2022)
A source f = χCφ for (∆ + k2)u = f scatters for any k > 0 when
φ is smooth enough and non-zero at the vertex of the cone C when∫

S2∩C
Y m

2 dS ̸= 0

for m ∈ {−2,−1, 0,+1,+2} and Y m
2 is the spherical harmonic of

degree 2. This is true if C fits into a thin enough spherical cone.
“Thin enough” means cos θ ≤ 1/

√
3. The magic angle is ≈ 54.74◦.
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Scattering screens
A flat screen Ω = Ω0 × {0} with Ω0 ⊂ R2 simply connected,
bounded and smooth. Scattering from such a screen:

(∆ + k2)us = 0, R3 \ Ω,
ui + us = 0, Ω,

r(∂r − ik)us → 0, r = |x | → ∞.

Let Ω,Ω′ be flat screens, k > 0, ui an arbitary incident wave, and
us , us ′ corresponding scattered waves.

Theorem (B.–Päivärinta–Sadique 2020)
▶ If ui(x1, x2, x3) + ui(x1, x2,−x3) ̸= 0 for some x and

us
∞ = us ′

∞ then Ω = Ω′.
▶ If ui(x1, x2, x3) + ui(x1, x2,−x3) = 0 for all x then

us
∞ = us ′

∞ = 0.
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What about the future?

New directions: free boundary methods. Will they solve the
problem?

What is the problem?

What geometric features of a scatterer cause arbitrary
a) plane waves,
b) Herglotz or other waves

to give non-trivial scattering?

What guarantees vanishing far-fields?
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Thank you!
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