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Scattering theory

Fixed frequency scattering

The total wave u satisfies
(A+ K1+ V))u=0,
V models a perturbation of the background,
u= u(x) + us(x)
7 AN

incident wave scattered wave
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Fixed frequency scattering theory: measurements
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Measurement: A, is the far-field pattern of the scattered wave
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u (X) - |X|(n—1)/2 A”I <|X|> +0 |X|n/2

4/34



Different inverse scattering problems

Given the far-field map u’ — A, recover the scattering potential
V or its support €.

Solved when
» full far-field map given for all large frequencies (Saito 1984)

» full far-field map given for a single frequency

> Sylvester—-Uhlmann 1987: 3D Calderén problem
> R. Novikov 1988: 3D scattering
> Bukhgeim 2007: 2D scattering

» -+ countless other variations

My focus is on single measurement: A, given only for a single u'.

Schiffer’s problem: can a single measurement determine 27
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Why one measurement only?

Example: Lord Rutherford’s gold-foil experiment

Single incident wave
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Scattering theory

Rutherford experiment’s conclusions

THOMSON RUTHEBFORD
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measurement + a-priori information = conclusion
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Sampling methods

» 96 Colton — Kirsh: linear sampling method (points)
» 98 lkehata: probing method (curve)

» ...Luke, Potthast, Sylvester, Kusiak: range test, no response
test (sets)
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Factorization method

Most sampling methods gave only sufficient conditions for

x € supp V. Kirsch 90’s, Grinberg 00's: factorization method.
Gives necessary and sufficient conditions.

Idea:

v = [ e g(0)do(0), g e (57

ekl X 1
S J— -
0= e () 70

the far-field operator
F:L2(S"h — [2(S™Y),  Fg=A,

is factored as
F=GTG*

G compact, T isomorphism. The range of G can be characterized
and gives information about supp V.
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No scattering implies k% ITE

Let u’ be the incident wave and assume a zero far-field: A, = 0.

Rellich’s lemma and unique continuation imply u®(x) = 0 for
x € Q=R"\supp V.

(A+kHu' =0, Q
(A+ KA+ V)W +uv)=0 Q
us € H3(Q),

so v =u' and u = u' 4+ u® solve the interior transmission problem.
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Fundamental research into ITE

» 86, 88" Kirsch, Colton—Monk: ITE problem posed

» 89, 91' Colton—Kirsch—Paivirinta, Rynne—Sleeman:
discreteness of ITE

> 91'-08" NOTHING. . .

» 07', 09' Cakoni—Colton—Monk, Cakoni—Colton—Haddar:
qualitative information about V from ITE's

» 08’ Paivarinta—Sylvester: existence for general scatterers

» 10’ Cakoni—Gintides—Haddar: infinitely many ITE's

» 10’ Cakoni—Colton—Haddar: ITE's can be deduced from
far-field data

» 11' Hitrik—Krupchyk—Ola—Paivarinta: bounds on location
of complex ITE's

> 10'4+: EXPLOSION OF INTEREST

» ~2016: interest started shifting to “Steklov eigenvalues”
http://www.maths.dur.ac.uk/Ims/104 /talks/1092monk.pdf
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Interior transmission eigenvalues VS sampling methods

Recal: A, =0, v #0 = Kk?ITE

Sampling method users avoid ITE's. They rely on the far-field map
being injective.

Are they too careful?
» Colton—Monk 88: supp V compact, V radial, k% ITE
= Ju' #£0, A, =0
» Regge, Newton, Sabatier, Grinevich, Manakov, Novikov
50's — 90's: radial potentials transparent at a fixed k2 i.e.
= A, =0V
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What if the measurement gives nothing?

It is very unfortunate if the far-field map is not injective. Most
scattering potentials do have interior transmission eigenvalues.
These exist when the map is non-injective. So it looks like the
situation is unfortunate?

Theorem (B.—Paivarinta—Sylvester CMP 2014)
The potential V' = x[o,cc[, #(0) # 0 always scatters.

For any incident wave u’ # 0 and wavenumber k > 0 we have
A, # 0. The far-field map is injective despite there being
transmission eigenvalues!

However, if k is a transmission eigenvalue A, can become
arbitrarily small with ||v'|| > 1.
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Proof sketch

Rellich’s theorem and unique continuation imply u = u' in Qb so
k2/ Vu' ugdx = —/ uo(A + k*(1+ V) (u—u)dx =0
Q

if (A+Kk2(1+ V))up=0in Q.
In simple case

W(x) = 4/ (0) + ul(x)
uo(x) = (1 + ¥(x))
V() = Xpo.no ()($(0) + :(x))

Holder estimates give

C e ()] 17" < |¢(@)u'(0) [ erax| < Clp/ "

[0,00["

if v, < Clo|~"/P".

14/34



Some follow-up corner scattering results by others

» Paivarinta—Salo—Vesalainen 2017: 2D any angle, 3D almost
any spherical cone

» Hu-Salo—Vesalainen 2016: smoothness reduction, new
arguments, polygonal scatterer probing

» Elschner—Hu 2015, 2018: 3D any domain having two faces
meet at an angle, and also curved edges

» Liu—Xiao 2017: electromagnetic waves

» free boundary methods:

> Cakoni—Vogelius 2021: border singularities
> Salo—Shahgholian 2021: analytic boundary non-scattering
> ...
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Injectivity of the Schiffer’'s problem for polyhedra

Theorem (Hu-Salo—Vesalainen, Elschner-Hu)

Let P, P' be convex polyhedra and V = xpp, V' = xpi’ for
admissible functions ¢, ¢'. Then

P£P = A,#A, VYU #0

Any single incident wave determines P in the class of polyhedral
penetrable scatterers.
Ikehata's enclosure method (1999) gives roughly the same!
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Stability of polygonal scatterer probing

Non-vanishing total wave

Theorem (B.—Liu 2021)

Let u' be an incident wave and let V = xpyp, V' = xp¢ be
admissible with |u|,|u'| # 0. Then

du(P. P') < Clinin || Ay — A1)

for some 1 > 0.

Note 1: stability is still unknown without assuming |u|, |u’| # 0.
Note 2: is this the optimal stability??
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Lower bound for far-field pattern
Arbitrary Herglotz wave

Theorem (B.—Liu 2017)
Let u' be a normalized Herglotz wave,

i) = [ g(0)do(0), gl = 1
and let V = xpy be admissible with x. a corner of P. Then
[Auill 2(s0-1) = Cpy),v >0
where
ui(xc +r0) = rNPN(H) + (’)(rN+1),

1Pull = [, 1Pu(®)] do(®) > 0.
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Mistake?

F. Cakoni: “Incident waves that approx-
imate transmission eigenfunctions pro-
duce arbitrarily small far-field patterns.”

19/34



From apparent contradiction to inspiration

Theorem (B.—Liu 2017)

Let the potential V = xqp be admissible. Let v,w # Q be
transmission eigenfunctions:

(A+K)v=0Q
(A+KA+V)I)Iw=0 Q
w — v € H3(Q).
Under C®%-smoothness of v near a convex corner x. we have

v(xc) = w(xc) = 0.
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Transmission eigenfunction localization

B.—Li-Liu—-Wang 2017
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Piecewise constant determination

Injectivity of piecewise constant potential probing:

Theorem (B., Liu, 2020)

LetY;, j=1,2,... be bounded convex polyhedra in an admissible
geometric arrangement (think pixels/voxels) and V' = 3~; Vixs,,
V' =33, Vixs,; for constants V;, V] € C. Then

VAV = A, #A, Viu'(x)=e"
if k > 0 small or |u| + |u'| # 0 at each vertex.

A single incident plane wave determines V in the class of
discretized penetrable scatterers if the grid is unknown but same
for both V and V'
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Proof sketch
Integration by parts

k? / (V — V) updx = / (v — u")Oyug — updy(u — u'))dx
Q o0

if (A+Kk2(1+ V))up=0in Q.
Simple case: Q = B(0,¢) N L; with £; =10, 1["

U (x) = J'(0) + ul(x) u' € H? < C/2
up(x) = e”*(1 + ¢(x)) CGO
(V-VHx)=V,-V/ piecewise constant

<Clp| ™"

n
+

Cl(v; = v )| 1ol = ‘(vj — V))u(0) /R e dx

if v, < Clo|~"/P".
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Generalizations and limitations

» unique determination of corner location and value

» if X; might be different for V, V" both (¥;)%2; and
V' =3_; Vixs; uniquely determined by a single measurement if
geometry known to be nested

» method cannot yet be shown to distinguish between

X,

Xy

=

Vi

Va

Vs

Vi

Vs

‘/1/

Vi
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Always scattering

High curvature case

Q bounded domain, 0 € 92 admissible
K-curvature point.

Theorem (B.—-Liu, 2021)
Iff = xap, ¢ € C*(R") and

[9(0)] = C(In K)("H3)/2K =0

then us # 0 for (A + k?)u = f.
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Non-scattering
Technically simpler: inverse source problem
(A + k*)u=f, lim (0, — ikr)u=0
r—00

Can one have f # 0 but uy, = 07
Recall:

N

Uoo(e) = Ck7nf(k9).

l.e. can a compactly supported function have Fourier transform
vanishing on a sphere?

Yes: let
1
Flx) = 4 & x| < ro
0, [x|>ro
where rp > 0. Then

uoo(e) = Ck,n?(ke) = Cl/<,an/2(kr0) =0

if kro is a zero of the Bessel function of order n/2.
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Always scattering
Smallness 1/2

A small uniform ball always scatters!

Also: any source with small shape always scatters!

Theorem (B.-Liu, 2021)

Let n>2, Rk €e Ry, 0< a<1. Let Q CR" be a bounded
Lipschitz domain of diameter at most R, and whose complement
is connected. Let Q. be a component of Q). The source f = xq
radiates a non-zero far-field pattern at wavenumber k if

(dlam(QC))a S Csupan |(10”
H‘PHca(ﬁc)

for some C = C(k, Rm, n) > 0.

27 /34



Always scattering
Smallness 2/2: Proof

Suppose (A + k?)u = xqp and us = 0. Then Ujgs = 0, so
Ugq, € H3(Q2.) and (A + k?)u = ¢ in Q..

Set g = ¢ — k2u. Elliptic regularity implies g € C%(Q.) with
lgll, < C(n, k, Rm) |l¢l,- Moreover g = Au and so

/ g(x)dx = 1-Audx =0
c QC

because u =9, u=0in 0Q.. Let p € 0. Then

2(p)m(Qe) = g(p)m(Qe) = — /Q (g(x) — &(p)) dx

Hence

[P(p) m(2) < gl [ 1x= bl b < gl m(Q) (diam(@))"
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Inverse source problem, Schiffer’s problem

(A+k)u=f=xap,  lim (9 —ikr)u=0
Can uso(0) = cf(kB) determine Q when k is fixed?

Unique determination:

> Uso = U, = Q = Q' for convex polyhedral shapes (corner
scattering). Assuming non-vanishing total waves, also for
elasticity (B.—Lin 2018), electromagnetism (B.-Liu—Xiao
2021),

> Uy = U, = Q =~ Q' for convex polyhedral shapes whose
corners have been smoothened to admissible K-curvature
points (high curvature scattering, B.—Liu 2021),

> Uy = U, = Q = Q' for well-separated collections of small
scatterers (small source scattering, B.—Liu 2021).
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Non-spherical cones

Potential scattering

Let C be any cone whose cross-section K is star-shaped and
Xk € H™(R?) for some 7 > 1/2.

Theorem (B.—Pohjola 2022)

For any 6 > 0 there is a cone Cs such that dy(Cs, C) < § and with
the following property: potentials of the form

V = XCs¥

where @ is smooth enough (roughly C'/*) and non-zero at the
vertex always scatter.

30/34



Non-spherical cones

Source scattering (easier)

Theorem (B.—Pohjola 2022)

A source f = xcp for (A + k?)u = f scatters for any k > 0 when
 is smooth enough and non-zero at the vertex of the cone C when

/ Y dS £ 0
Nale

forme {—2,—1,0,+1,42} and Y3" is the spherical harmonic of
degree 2. This is true if C fits into a thin enough spherical cone.

“Thin enough” means cosf < 1/\/5 The magic angle is ~ 54.74°.
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Scattering screens

A flat screen Q = Qg x {0} with Qo C R? simply connected,
bounded and smooth. Scattering from such a screen:

(A+K)uf =0, R3\Q,
u 4+ u® =0, Q,
r(0r — ik)u® — 0, r=|x| — oo.

Let Q, Q' be flat screens, k > 0, u' an arbitary incident wave, and
u®, us' corresponding scattered waves.

Theorem (B.—Paivarinta-Sadique 2020)

> If u'(x1,x0,x3) + u'(x1, %2, —x3) # O for some x and
us, = us then Q =,

> If u'(x1,x0,x3) + u'(x1, X2, —x3) = O for all x then

ul.=usl_=0

oo oco T Y
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What about the future?

New directions: free boundary methods. Will they solve the
problem?

What is the problem?

What geometric features of a scatterer cause arbitrary
a) plane waves,
b) Herglotz or other waves

to give non-trivial scattering?

What guarantees vanishing far-fields?
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Thank you!
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