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Fixed frequency scattering theory: measurements
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Measurement: A, is the far-field pattern of the scattered wave
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Different inverse scattering problems

Given the far-field map u’ — A, recover the scattering potential
V or its support Q.
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Solved when
» full far-field map given for all large frequencies (Saito 1984),

» full far-field map given for a single frequency
(Sylvester-Uhlmann 1987 3D + Bukhgeim 2007 2D),
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Different inverse scattering problems

Given the far-field map u’ — A, recover the scattering potential
V or its support Q.

Solved when
» full far-field map given for all large frequencies (Saito 1984),

» full far-field map given for a single frequency
(Sylvester-Uhlmann 1987 3D + Bukhgeim 2007 2D),

» -+ countless other variations

My focus is on single measurement: A, given only for a single u'.

Schiffer’s problem: can a single measurement determine Q7
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Why one measurement only?
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Why one measurement only?

Example: Lord Rutherford’s gold-foil experiment

Single incident wave

5/24



Scattering theory

Rutherford experiment’s conclusions
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measurement + a-priori information = conclusion
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What if the measurement gives nothing?
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map is not injective.
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What if the measurement gives nothing?

Also for theoretical reasons, it is very unfortunate if the far-field
map is not injective.

Theorem (B.—Paivarinta—Sylvester CMP 2014)
The potential V = x[o o[, #(0) # 0 always scatters.

For any incident wave u’ # 0 and wavenumber k > 0 we have
A, # 0.

However if k is a transmission eigenvalue A, can become
arbitrarily small with ||v'|| > 1.
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Some follow-up corner scattering results by others

» Paivarinta—Salo—Vesalainen 2017: 2D any angle, 3D almost
any spherical cone

» Hu-Salo—Vesalainen 2016: smoothness reduction, new
arguments, polygonal scatterer probing

» Elschner-Hu 2015, 2018: 3D any domain having two faces
meet at an angle, and also curved edges

> Liu—Xiao 2017: electromagnetic waves

> free boundary methods:

» Cakoni—Vogelius 2021: border singularities
» Salo—Shahgholian 2021: analytic boundary non-scattering
> ...

8/24



Injectivity of the Schiffer’'s problem for polyhedra

Theorem (Hu-Salo—Vesalainen, Elschner-Hu)

Let P, P' be convex polyhedra and V = xpp, V' = xpi’ for
admissible functions ¢, ¢'. Then

P£P = A,#A, VYU #0

Any single incident wave determines P in the class of polyhedral
penetrable scatterers.
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Injectivity of the Schiffer’'s problem for polyhedra

Theorem (Hu-Salo—Vesalainen, Elschner-Hu)

Let P, P' be convex polyhedra and V = xpp, V' = xpi’ for
admissible functions ¢, ¢'. Then

P£P = A,#A, VYU #0

Any single incident wave determines P in the class of polyhedral
penetrable scatterers.
Ikehata's enclosure method (1999) gives roughly the same!
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Stability of polygonal scatterer probing

Non-vanishing total wave

Theorem (B.—Liu 2021)

Let u' be an incident wave and let V = xpyp, V' = xp¢ be
admissible with |u| , |u'| # 0. Then

du(P,P') < C(Inin|A, — ALl )™

for some 1 > 0.
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Stability of polygonal scatterer probing

Non-vanishing total wave

Theorem (B.—Liu 2021)

Let u' be an incident wave and let V = xpyp, V' = xp¢ be
admissible with |u|,|u'| # 0. Then

du(P. P') < Clinin || Ay — A1)

for some 1 > 0.

Note 1: stability is still unknown without assuming |u|, |u’| # 0.
Note 2: is this the optimal stability??
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Lower bound for far-field pattern
Arbitrary Herglotz wave

Theorem (B.—Liu 2017)
Let u' be a normalized Herglotz wave,

i) = [ g(0)do(0), gl = 1
and let V = xpy be admissible with x. a corner of P. Then
[Auill 2(s0-1) = Cpy),v >0
where
ui(xc +r0) = rNPN(H) + (’)(rN+1),

1Pull = [, 1Pu(®)] do(®) > 0.
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Mistake?

F. Cakoni: “Incident waves that approx-
imate transmission eigenfunctions pro-
duce arbitrarily small far-field patterns.”
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From apparent contradiction to inspiration

Theorem (B.—Liu 2017)

Let the potential V = xqp be admissible. Let v,w # Q be
transmission eigenfunctions:

(A+K)v=0Q
(A+KA+V)I)Iw=0 Q
w — v € H3(Q).
Under C®%-smoothness of v near a convex corner x. we have

v(xc) = w(xc) = 0.
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Transmission eigenfunction localization

B.—Li-Liu—-Wang 2017
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Piecewise constant determination

Injectivity of piecewise constant potential probing:

Theorem (B., Liu, 2020)

LetY;, j=1,2,... be bounded convex polyhedra in an admissible
geometric arrangement (think pixels/voxels) and V' = 3~; Vixs,,
V' =33, Vixs,; for constants V;, V] € C. Then

VAV = A, #A, Viu'(x)=e"
if k > 0 small or |u| + |u'| # 0 at each vertex.

A single incident plane wave determines V in the class of
discretized penetrable scatterers if the grid is unknown but same
for both V and V'
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Proof sketch
Integration by parts

k? / (V — VW updx = / (v — u")Oyug — updy(u — u'))dx
Q o0

if (A+Kk2(1+ V))up=0in Q.
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Proof sketch
Integration by parts

k? / (V — V) updx = / (v — u")Oyug — updy(u — u'))dx
Q o0

if (A+Kk2(1+ V))up=0in Q.
Simple case: Q = B(0,¢) N L; with £; =10, 1["

U (x) = J'(0) + ul(x) u' € H? < C/2
up(x) = e”*(1 + ¢(x)) CGO
(V-VHx)=V,-V/ piecewise constant

<Clp| ™"

n
+

Cl(v; = v )| 1ol = ‘(vj — V))u(0) /R e dx

if v, < Clo|~"/P".
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Generalizations and limitations

» unique determination of corner location and value
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Generalizations and limitations
» unique determination of corner location and value
> if &; might be different for V, V" both (¥;)%2; and
V' =3; Vixs; uniquely determined by a single measurement
if geometry known to be nested
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Generalizations and limitations

» unique determination of corner location and value

> if &; might be different for V, V" both (¥;)%2; and
V' =3; Vixs; uniquely determined by a single measurement
if geometry known to be nested

b}

)

=

> method cannot yet be shown to distinguish between

v v Vi

v Vi

Vs Vi v
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Always scattering

High curvature case

Q bounded domain, 0 € 92 admissible
K-curvature point.

Theorem (B.—-Liu, 2021)
Iff = xap, ¢ € C*(R") and

[9(0)] = C(In K)(H3)/2K =0

then us # 0 for (A + k?)u = f.
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Inverse source problem, Schiffer’s problem

(A + K)u=f = xap, Jlim (0, — ikr)u =0

Can uso(0) = cf(kB) determine Q when k is fixed?
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Inverse source problem, Schiffer’s problem

(A+k)u=f=xap,  lim (9 —ikr)u=0
Can uso(0) = cf(kB) determine Q when k is fixed?

Unique determination:

> Uy = ul, = Q = Q' for convex polyhedral shapes (corner
scattering). Assuming non-vanishing total waves, also for
elasticity (B.—Lin 2018), electromagnetism (B.-Liu—Xiao
2021),

> Uy = ul, = Q = Q' for convex polyhedral shapes whose
corners have been smoothened to admissible K-curvature
points (high curvature scattering, B.—Liu 2021),

> Uy = ul, = Q = Q for well-separated collections of small
scatterers (small source scattering, B.—Liu 2021).
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Non-spherical cones

Potential scattering

Let C be any cone whose cross-section K is star-shaped and
Xk € H™(R?) for some 7 > 1/2.

Theorem (B.—Pohjola 2022)

For any 6 > 0 there is a cone Cs such that dy(Cs, C) < § and with
the following property: potentials of the form

V = XCs¥

where @ is smooth enough (roughly C'/*) and non-zero at the
vertex always scatter.
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Non-spherical cones

Source scattering (easier)

Theorem (B.—Pohjola 2022)

A source f = xcp for (A + k?)u = f scatters for any k > 0 when
@ Is smooth enough and non-zero at the vertex of the cone C when

/ Y dS £ 0
S2nC

forme {—2,—-1,0,+1,42} and Y3" is the spherical harmonic of
degree 2. This is true if C fits into a thin enough spherical cone.
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Non-spherical cones

Source scattering (easier)

Theorem (B.—Pohjola 2022)

A source f = xcp for (A + k?)u = f scatters for any k > 0 when
@ Is smooth enough and non-zero at the vertex of the cone C when

/ Y dS £ 0
Neale

forme {—2,—-1,0,+1,42} and Y3" is the spherical harmonic of
degree 2. This is true if C fits into a thin enough spherical cone.
“Thin enough” means cosf < 1/\/§ The magic angle is =~ 54.74°.
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Scattering screens

A flat screen Q = Qg x {0} with Qo C R? simply connected,
bounded and smooth. Scattering from such a screen:

(A+K)uf =0, R3\Q,
u 4+ u® =0, Q,
r(0r — ik)u® — 0, r=|x| — oo.

Let Q, Q' be flat screens, k > 0, u' an arbitary incident wave, and
u®, us' corresponding scattered waves.

Theorem (B.—Paivarinta-Sadique 2020)

> If u'(x1,x0,x3) + u'(x1, %2, —x3) # 0 for some x and
us, = us then Q =,

> If u'(x1,x0,x3) + u'(x1, X2, —x3) = O for all x then

ul,=ul_=0

oo oco T Y

22/24



What about the future?

New directions: free boundary methods. Will they solve the
problem?

What is the problem?
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a) plane waves,
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to give non-trivial scattering?
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What about the future?

New directions: free boundary methods. Will they solve the
problem?

What is the problem?

What geometric features of a scatterer cause arbitrary
a) plane waves,
b) Herglotz or other waves

to give non-trivial scattering?

What guarantees vanishing far-fields?
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Thank you!
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