Imaging water supply pipes using pressure waves

Emilia L.K. Blåsten

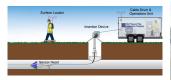
Collaborators: Tapio Helin, Lauri Oksanen, Fedi Zouari, Moez Louati, Mohamed S. Ghidaoui, and Silvia Meniconi and Bruno Brunone's group

> COPE–INAR workshop LUT University, November 17, 2022

Water supply network

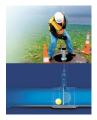
How to locate problems traditionally?

Replace & Rehabilitate



Sahara System

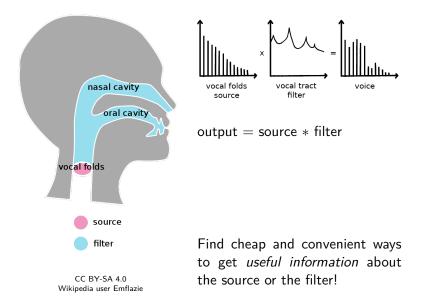
Smart Ball



Sonar

Gas Injection

Vocal tract imaging: inverse glottal filtering



Some examples of useful information

In voice therapy:

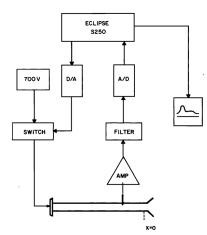
► ...

- vocal tract length
- vocal tract volume
- resonant frequencies of vocal tract
- open/closed quotient
- source spectral slope

Difficulty: IGF is a blind deconvolution!

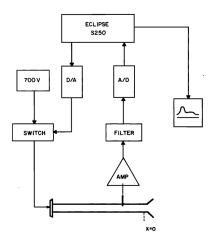
However: the above are all single numbers! Some rudimentary methods exist already, but not considered in this context.

Vocal tract imaging: with an external sound



Sondhi, M. M., & Resnick, J. R. (1983). The inverse problem for the vocal tract: numerical methods, acoustical experiments, and speech synthesis. The Journal of the Acoustical Society of America, 73(3), 985–1002. http://dx. doi.org/10.1121/1.389024

Vocal tract imaging: with an external sound



Sondhi, M. M., & Resnick, J. R. (1983). The inverse problem for the vocal tract: numerical methods, acoustical experiments, and speech synthesis. The Journal of the Acoustical Society of America, 73(3), 985–1002. http://dx. doi.org/10.1121/1.389024

Alternative source: white noise, it contains all the frequencies!

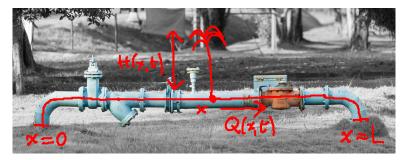
Mathematical model

Water in pipes VS Air in the vocal tract

Fluid in a pipe. Same model!

Direct model: single pipe

Direct model: single pipe



$$\begin{split} \partial_t H &+ \frac{a^2}{gA} \partial Q = 0, \qquad \qquad 0 < x < L, \quad t \in \mathbb{R}, \\ \partial_t Q &+ gA \partial H = 0, \qquad \qquad 0 < x < L, \quad t \in \mathbb{R}, \\ H &= Q = 0, \qquad \qquad 0 < x < L, \quad t \leq 0. \end{split}$$

Water hammer equations. https://www.youtube.com/watch?v=jTrhHUwDNYE

One pipe inverse problem

Measurement $\Lambda(t)$ defined by assuming H, Q satisfy

$$\begin{aligned} \partial_t H &+ \frac{a^2}{gA} \partial Q = 0, \qquad 0 < x < L, \quad t \in \mathbb{R}, \\ \partial_t Q &+ gA \partial H = 0, \qquad 0 < x < L, \quad t \in \mathbb{R}, \\ H &= Q = 0, \qquad 0 < x < L, \quad t \leq 0 \end{aligned}$$

Boundary conditions:

unknown at x=Lunit impulse discharge ${\it Q}(0,t)=\delta_0(t)$ at x=0

Then $\Lambda(t) = H(0, t)$.

Recover: A(x) (or a(x), or A(x)/a(x))

Integration by parts

For simplicity assume $a(x) = a_0$ constant! Assume virtual H_v , Q_v causal solutions. Then

$$-\partial Q_{v} = \frac{gA}{a_{0}^{2}}\partial_{t}H_{v}$$

and integrate $\int_0^{\tau} \int_0^{a_0 \tau} \dots dx dt$ given any fixed $\tau > 0$.

$$-\int_0^\tau \int_0^{a_0\tau} \partial Q_v(x,t) dx dt = \int_0^\tau \int_0^{a_0\tau} \frac{gA(x)}{a_0^2} \partial_t H_v(x,t) dx dt$$

•
$$H_v = Q_v = 0$$
 at $t = 0$
• hence $H_v(x, t) = Q_v(x, t) = 0$ when $x \ge a_0 t$, so

$$\int_0^\tau Q_\nu(0,t) dt = \int_0^{a_0\tau} \frac{gA(x)}{a_0^2} H_\nu(x,\tau) dx$$
(1)

Special solutions

Given any causal solutions, for example the virtual ones H_v , Q_v , let's look at the total volume input into the system:

$$V(\tau) := \int_0^\tau Q_v(0,t) dt = \int_0^{a_0\tau} \frac{gA(x)}{a_0^2} H_v(x,\tau) dx.$$

If H_v is such that

$$egin{aligned} \mathcal{H}_{m{v}}(x, au) = \left\{egin{aligned} 1, & x < m{a}_0 au \ 0, & x \geqslant m{a}_0 au \end{aligned}
ight. \ ext{ aligned} au = au, \end{aligned}$$

then

$$A(x) = \frac{a_0}{g} \frac{\partial V}{\partial \tau} \left(\frac{x}{a_0}\right)$$

After the facts, new problem statement

Unknown: A(x). Measurement:

$$Q(0,t) = \delta_0(t), \qquad H(0,t) = \Lambda(t).$$

Given any au, find causal solutions $H_{
u}, Q_{
u}$ such that at time t = au

$$H_{\mathbf{v}}(\mathbf{x},\tau) = \begin{cases} 1, & \mathbf{x} < \mathbf{a}_0 \tau \\ 0, & \mathbf{x} \geqslant \mathbf{a}_0 \tau \end{cases}$$

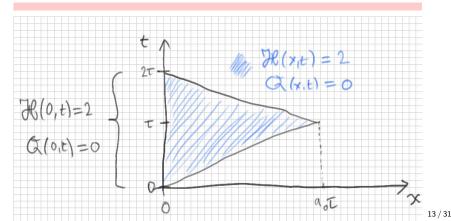
The corresponding Q_v will be used to calculate A(x).

Unique continuation

If \mathscr{H}, \mathscr{Q} satisfy the equations on 0 < x < L, $0 < t < 2\tau$ (but are not necessarily causal), and

$$\mathscr{H}(0,t) = 2, \quad \mathscr{Q}(0,t) = 0, \qquad 0 < t < 2 au,$$

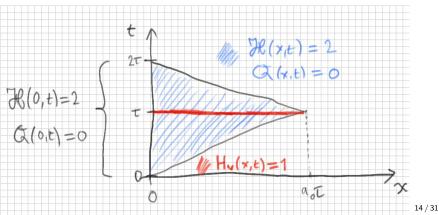
then $\mathscr{H}(x,t) = 2$, $\mathscr{Q}(x,t) = 0$ in $x < a_0(\tau - |\tau - t|)$.



Unique continuation to causal solutions

If \mathscr{H}, \mathscr{Q} as previously and H_v, Q_v causal, then $\mathscr{H}(x,t) = H_v(x,t) + H_v(x,2\tau-t), \quad \mathscr{Q}(x,t) = Q_v(x,t) - Q_v(x,2\tau-t)$ $\implies H_v(x,\tau) = \frac{1}{2}\mathscr{H}(x,\tau) = \begin{cases} 1, & x < a_0\tau \\ 0, & x \ge a_0\tau \end{cases}$

Then $A(a_0\tau) = a_0g^{-1}\partial_{\tau}\int_0^{\tau} Q_{\nu}(0,t)dt$. (Note: Q_{ν} depends on τ !!)



How to find the suitable H_v , Q_v ?

Integral equation from requirements of \mathscr{H}, \mathscr{Q} Measurement:

$$Q(0,t) = \delta_0(t), \quad H(0,t) = rac{a_0}{gA(0)} (\delta_0(t) + h(t))$$

Let H_{ν} , Q_{ν} be causal solutions such that $\mathscr{H}(0, t) = 2$, $\mathscr{Q}(0, t) = 0$ on $0 < t < 2\tau$. Then rewriting these eq's in term of Q_{ν} gives:

$$Q_{v}(0,t) + rac{1}{2} \int_{0}^{2 au} Q_{v}(0,s) h(|s-t|) ds = rac{gA(0)}{a_{0}}, \qquad 0 < t < 2 au.$$

Conversely, if Q_v solves the above and H_v is the corresponding pressure head, then

$$H_{v}(x, au) = \left\{egin{array}{cc} 1, & x < a_{0} au & \ 0, & x \geqslant a_{0} au & \ 0 & t = au, \end{array}
ight.$$
 at $t= au,$

so $A(a_0\tau) = a_0g^{-1}\partial_{\tau}\int_0^{\tau}Q_v(0,t)dt$

Algorithm

- 1. Input $Q(0,t) = \delta_0(t)$ and for $t < 2T = 2L/a_0$ measure $H(0,t) = \frac{a_0}{gA(0)}(\delta_0(t) + h(t))$
- 2. For 0 $<\tau<$ T solve for the boundary value of the virtual solution $Q_{\rm v}$

$$Q_{v}(0,t) + rac{1}{2} \int_{0}^{2 au} Q_{v}(0,s) h(|s-t|) ds = rac{gA(0)}{a_{0}}, \quad 0 < t < 2 au$$

3. Set

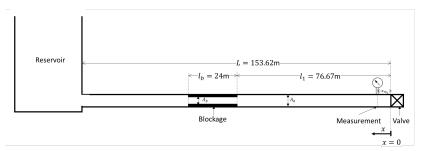
$$V(\tau) = \int_0^\tau Q_v(0,t) dt \qquad \left(= \int_0^{a_0\tau} \frac{gA(x)}{a_0^2} dx \right)$$

- 4. Repeat 2–3 (on the computer) for many τ to get a good approximation of V
- 5. Given x < L the area can be found by

$$A(x) = \frac{a_0}{g} \left(\frac{\partial}{\partial \tau} V(\tau) \right)_{\tau = x/a_0}$$

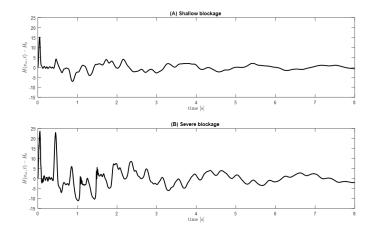
Laboratory experiment: setup

Measurement set up by Silvia Meniconi and Bruno Brunone's group.



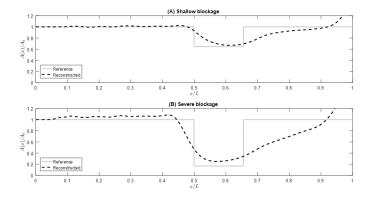
Laboratory experiment: impulse-response function

Measurement set up by Silvia Meniconi and Bruno Brunone's group.

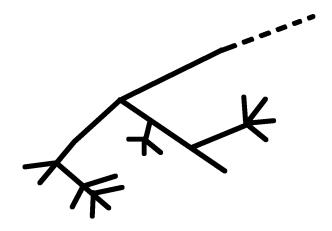


Reconstruction from measured and processed data

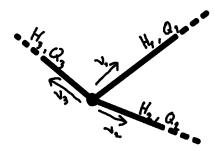
Measurement set up by Silvia Meniconi and Bruno Brunone's group.



Network



Junction conditions



- H is a scalar: the boundary values H_j are the same at connected pipe ends
- No sinks or sources (total water flowing into pipes sum to zero):

$$\sum_j \nu_j Q_j = 0$$

Main difficulty compared to a segment?

The sets where we can have $H_{\nu}(x, \tau) = 1$.

In which Ω can we force $H_v(x, \tau) = 1$?

Control theory suggests that there are boundary values such that

$$H_{v}(x, au) = egin{cases} 1, & x \in \Omega \ 0, & x \notin \Omega \end{cases}$$

given any measurable set $\Omega \subset \mathbb{G}$ when \mathbb{G} is a tree and τ large.

In which Ω can we force $H_v(x, \tau) = 1$?

Control theory suggests that there are boundary values such that

$$H_{v}(x, au) = egin{cases} 1, & x \in \Omega \ 0, & x \notin \Omega \end{cases}$$

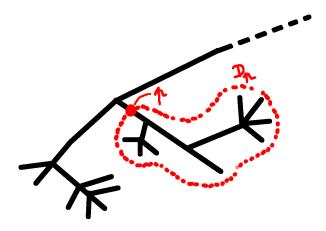
given any measurable set $\Omega \subset \mathbb{G}$ when \mathbb{G} is a tree and τ large.

HOWEVER

Can we solve for these boundary values? Is it computationally efficient? Is it even possible?

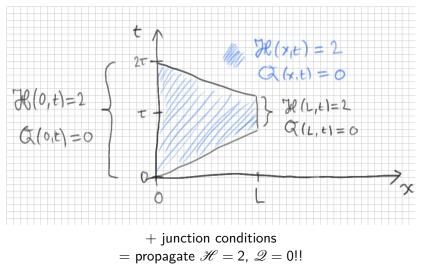
Admissible domains

This works:



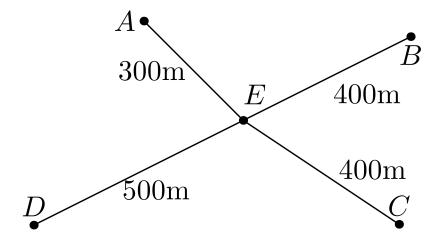
But needs a matrix of measurements!

Inductive unique continuation

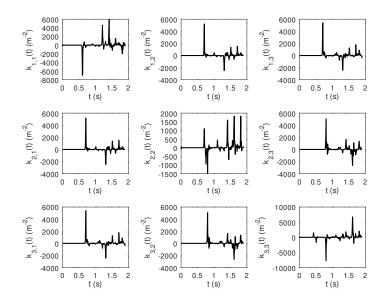


The same logic as before works, but all the equations become more complicated.

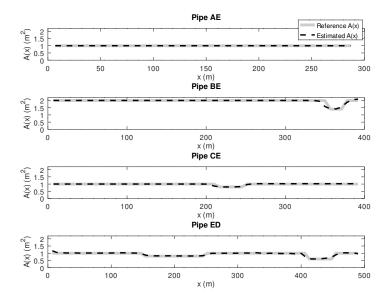
Numerical experiment: setup



Numerical experiment: impulse-response matrix function $h_{ij}(t) = A(x_j)g/a_0 \cdot k_{ij}(t)$

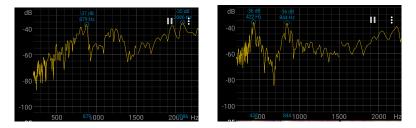


Reconstruction from measured data using regularization



Ongoing work With Lauri Oksanen (Univ. Helsinki) and Tapio Helin (LUT)

Instead of $Q(0, t) = \delta_0(t)$ we have white noise Q(0, t) = W(t).



Kiitos!