Scattering from corners and other singularities

Emilia Blåsten

LUT University, Finland

Inverse problems in analysis and geometry University of Helsinki, August 4, 2022

Scattering theory

=

 $u = u^i + u^s$

Fixed frequency scattering theory: measurements

Measurement: $A_{\mu i}$ is the far-field pattern of the scattered wave

$$u^{s}(x) = \frac{e^{ik|x|}}{|x|^{(n-1)/2}} A_{u^{i}}\left(\frac{x}{|x|}\right) + \mathcal{O}\left(\frac{1}{|x|^{n/2}}\right)$$

Different inverse scattering problems

Given the far-field map $u^i \mapsto A_{u^i}$, recover the scattering potential V or its support Ω .

Different inverse scattering problems

Given the far-field map $u^i \mapsto A_{u^i}$, recover the scattering potential V or its support Ω .

Solved when

- ▶ full far-field map given for all large frequencies (Saito 1984),
- full far-field map given for a single frequency (Sylvester-Uhlmann 1987 3D + Bukhgeim 2007 2D),
- + countless other variations

Different inverse scattering problems

Given the far-field map $u^i \mapsto A_{u^i}$, recover the scattering potential V or its support Ω .

Solved when

- ▶ full far-field map given for all large frequencies (Saito 1984),
- full far-field map given for a single frequency (Sylvester-Uhlmann 1987 3D + Bukhgeim 2007 2D),
- + countless other variations

My focus is on single measurement: A_{u^i} given only for a single u^i .

Schiffer's problem: can a single measurement determine Ω ?

Example: Lord Rutherford's gold-foil experiment

Example: Lord Rutherford's gold-foil experiment

Example: Lord Rutherford's gold-foil experiment

Example: Lord Rutherford's gold-foil experiment

Single incident wave

Scattering theory

Rutherford experiment's conclusions

measurement + a-priori information = conclusion

Also for theoretical reasons, it is very unfortunate if the far-field map is not injective.

Also for theoretical reasons, it is very unfortunate if the far-field map is not injective.

Theorem (B.-Päivärinta-Sylvester CMP 2014)

The potential $V = \chi_{[0,\infty[^n}\varphi, \varphi(0) \neq 0$ always scatters.

Also for theoretical reasons, it is very unfortunate if the far-field map is not injective.

Theorem (B.–Päivärinta–Sylvester CMP 2014) The potential $V = \chi_{[0,\infty]^n} \varphi$, $\varphi(0) \neq 0$ always scatters.

For any incident wave $u^i \neq 0$ and wavenumber k > 0 we have $A_{u^i} \neq 0$.

Also for theoretical reasons, it is very unfortunate if the far-field map is not injective.

Theorem (B.–Päivärinta–Sylvester CMP 2014) The potential $V = \chi_{[0,\infty]^n} \varphi$, $\varphi(0) \neq 0$ always scatters.

For any incident wave $u^i \neq 0$ and wavenumber k > 0 we have $A_{u^i} \neq 0$.

However if k is a transmission eigenvalue A_{u^i} can become arbitrarily small with $||u^i|| \ge 1$.

Some follow-up corner scattering results by others

- Päivärinta–Salo–Vesalainen 2017: 2D any angle, 3D almost any spherical cone
- Hu–Salo–Vesalainen 2016: smoothness reduction, new arguments, polygonal scatterer probing
- Elschner–Hu 2015, 2018: 3D any domain having two faces meet at an angle, and also curved edges
- Liu–Xiao 2017: electromagnetic waves
- free boundary methods:

> . . .

▶ ...

- Cakoni–Vogelius 2021: border singularities
- Salo–Shahgholian 2021: analytic boundary non-scattering

Injectivity of the Schiffer's problem for polyhedra

Theorem (Hu–Salo–Vesalainen, Elschner–Hu) Let P, P' be convex polyhedra and $V = \chi_P \varphi$, $V' = \chi_{P'} \varphi'$ for admissible functions φ, φ' . Then

$$P \neq P' \implies A_{u^i} \neq A'_{u^i} \quad \forall u^i \neq 0$$

Any single incident wave determines P in the class of polyhedral penetrable scatterers.

Injectivity of the Schiffer's problem for polyhedra

Theorem (Hu–Salo–Vesalainen, Elschner–Hu)

Let P, P' be convex polyhedra and $V = \chi_P \varphi$, $V' = \chi_{P'} \varphi'$ for admissible functions φ, φ' . Then

$$P \neq P' \implies A_{u^i} \neq A'_{u^i} \quad \forall u^i \neq 0$$

Any single incident wave determines P in the class of polyhedral penetrable scatterers.

Ikehata's enclosure method (1999) gives roughly the same!

Stability of polygonal scatterer probing

Non-vanishing total wave

Theorem (B.-Liu 2021)

Let u^i be an incident wave and let $V = \chi_P \varphi$, $V' = \chi_{P'} \varphi'$ be admissible with $|u|, |u'| \neq 0$. Then

$$d_{H}(P,P') \leq C(\ln \ln ||A_{u^{i}} - A'_{u^{i}}||_{2}^{-1})^{-\eta}$$

for some $\eta > 0$.

Stability of polygonal scatterer probing

Non-vanishing total wave

Theorem (B.-Liu 2021)

Let u^i be an incident wave and let $V = \chi_P \varphi$, $V' = \chi_{P'} \varphi'$ be admissible with $|u|, |u'| \neq 0$. Then

$$d_{H}(P,P') \leq C(\ln \ln ||A_{u^{i}} - A'_{u^{i}}||_{2}^{-1})^{-\eta}$$

for some $\eta > 0$.

Note 1: stability is still unknown without assuming $|u|, |u'| \neq 0$. Note 2: is this the optimal stability??

Lower bound for far-field pattern

Arbitrary Herglotz wave

Theorem (B.–Liu 2017) Let uⁱ be a normalized Herglotz wave,

$$u^{i}(x) = \int_{\mathbb{S}^{n-1}} e^{ik\theta \cdot x} g(\theta) d\sigma(\theta), \qquad \|g\|_{L^{2}(\mathbb{S}^{n-1})} = 1,$$

and let $V = \chi_P \varphi$ be admissible with x_c a corner of P. Then

$$\|A_{u^i}\|_{L^2(\mathbb{S}^{n-1})} \ge C_{\|P_N\|,V} > 0$$

where

$$u^{i}(x_{c}+r\theta) = r^{N}P_{N}(\theta) + \mathcal{O}(r^{N+1}),$$
$$\|P_{N}\| = \int_{\mathbb{S}^{n-1}} |P_{N}(\theta)| \, d\sigma(\theta) > 0.$$

Mistake?

F. Cakoni: "Incident waves that approximate transmission eigenfunctions produce arbitrarily small far-field patterns." From apparent contradiction to inspiration

Theorem (B.-Liu 2017)

Let the potential $V = \chi_{\Omega} \varphi$ be admissible. Let $v, w \neq 0$ be transmission eigenfunctions:

$$egin{aligned} & (\Delta+k^2)v=0, & \Omega\ & (\Delta+k^2(1+V))w=0, & \Omega\ & w-v\in H^2_0(\Omega). \end{aligned}$$

Under C^{α} -smoothness of v near a convex corner x_c we have

$$v(x_c)=w(x_c)=0.$$

Transmission eigenfunction localization

B.-Li-Liu-Wang 2017

Piecewise constant determination

Injectivity of piecewise constant potential probing:

Theorem (B., Liu, 2020)

Let Σ_j , j = 1, 2, ... be bounded convex polyhedra in an admissible geometric arrangement (think pixels/voxels) and $V = \sum_j V_j \chi_{\Sigma_j}$, $V' = \sum_j V'_j \chi_{\Sigma_j}$ for constants $V_j, V'_j \in \mathbb{C}$. Then

$$V \neq V' \implies A_{u^i} \neq A'_{u^i} \quad \forall u^i(x) = e^{ik\theta \cdot x}$$

if k > 0 small or $|u| + |u'| \neq 0$ at each vertex.

A single incident plane wave determines V in the class of discretized penetrable scatterers if the grid is unknown but same for both V and V'.

Proof sketch

Integration by parts

$$k^2 \int_{\Omega} (V - V') u' u_0 dx = \int_{\partial \Omega} \left((u - u') \partial_{\nu} u_0 - u_0 \partial_{\nu} (u - u') \right) dx$$

 $\text{if } (\Delta+k^2(1+V))u_0=0 \text{ in } \Omega.$

Proof sketch

Integration by parts

$$k^2 \int_{\Omega} (V - V') u' u_0 dx = \int_{\partial \Omega} \left((u - u') \partial_{\nu} u_0 - u_0 \partial_{\nu} (u - u') \right) dx$$

 $\begin{array}{l} \text{if } (\Delta+k^2(1+V))u_0=0 \text{ in }\Omega.\\ \text{Simple case: } \Omega=B(0,\varepsilon)\cap \Sigma_j \text{ with } \Sigma_j=\left]0,1\right[^n \end{array}$

$$\begin{aligned} u'(x) &= u'(0) + u'_r(x) & u' \in H^2 \hookrightarrow C^{1/2} \\ u_0(x) &= e^{\rho \cdot x} (1 + \psi(x)) & \text{CGO} \\ (V - V')(x) &= V_j - V'_j & \text{piecewise constant} \end{aligned}$$

Proof sketch

Integration by parts

$$k^2 \int_{\Omega} (V - V') u' u_0 dx = \int_{\partial \Omega} \left((u - u') \partial_{\nu} u_0 - u_0 \partial_{\nu} (u - u') \right) dx$$

 $\begin{array}{l} \text{if } (\Delta+k^2(1+V))u_0=0 \text{ in }\Omega.\\ \text{Simple case: } \Omega=B(0,\varepsilon)\cap \Sigma_j \text{ with } \Sigma_j=\left]0,1\right[^n \end{array}$

$$\begin{aligned} u'(x) &= u'(0) + u'_r(x) & u' \in H^2 \hookrightarrow C^{1/2} \\ u_0(x) &= e^{\rho \cdot x} (1 + \psi(x)) & \text{CGO} \\ (V - V')(x) &= V_j - V'_j & \text{piecewise constant} \end{aligned}$$

Hölder estimates give

$$C\left|(V_j-V_j')u'(0)\right|\left|\rho\right|^{-n}=\left|(V_j-V_j')u'(0)\int_{\mathbb{R}^n_+}e^{\rho\cdot x}dx\right|\leq C\left|\rho\right|^{-n-\delta}$$

$$\text{if } \|\psi\|_{p} \leq C |\rho|^{-n/p-\varepsilon}.$$

Generalizations and limitations

unique determination of corner location and value

Generalizations and limitations

- unique determination of corner location and value
- if Σ_j might be different for V, V': both (Σ_j)_{j=1}[∞] and
 V = Σ_j V_jχ_{Σ_j} uniquely determined by a single measurement if geometry known to be nested

Generalizations and limitations

- unique determination of corner location and value
- if Σ_j might be different for V, V': both (Σ_j)_{j=1}[∞] and
 V = Σ_j V_jχ_{Σ_j} uniquely determined by a single measurement if geometry known to be nested

method cannot yet be shown to distinguish between

V_1	V_2
V_3	V_4

Always scattering

High curvature case

$$\label{eq:solution} \begin{split} \Omega \text{ bounded domain, } 0 \in \partial \Omega \text{ admissible } \\ \textit{K-curvature point.} \end{split}$$

Theorem (B.–Liu, 2021) If $f = \chi_{\Omega}\varphi$, $\varphi \in C^{\alpha}(\mathbb{R}^n)$ and $|\varphi(0)| \ge C(\ln K)^{(n+3)/2}K^{-\delta}$ then $u_{\infty} \ne 0$ for $(\Delta + k^2)u = f$.

Inverse source problem, Schiffer's problem

$$(\Delta + k^2)u = f = \chi_{\Omega}\varphi, \qquad \lim_{r \to \infty} (\partial_r - ikr)u = 0$$

Can $u_{\infty}(\theta) = c\hat{f}(k\theta)$ determine Ω when k is fixed?

Inverse source problem, Schiffer's problem

$$(\Delta + k^2)u = f = \chi_{\Omega}\varphi, \qquad \lim_{r \to \infty} (\partial_r - ikr)u = 0$$

Can $u_{\infty}(\theta) = c\hat{f}(k\theta)$ determine Ω when k is fixed?

Unique determination:

- u_∞ = u'_∞ ⇒ Ω = Ω' for convex polyhedral shapes (corner scattering). Assuming non-vanishing total waves, also for elasticity (B.–Lin 2018), electromagnetism (B.–Liu–Xiao 2021),
- u_∞ = u'_∞ ⇒ Ω ≈ Ω' for convex polyhedral shapes whose corners have been smoothened to admissible K-curvature points (high curvature scattering, B.–Liu 2021),
- $u_{\infty} = u'_{\infty} \Longrightarrow \Omega \approx \Omega'$ for well-separated collections of small scatterers (small source scattering, B.–Liu 2021).

Non-spherical cones

Potential scattering

Let C be any cone whose cross-section K is star-shaped and $\chi_K \in H^{\tau}(\mathbb{R}^2)$ for some $\tau > 1/2$.

Theorem (B.–Pohjola submitted 2021)

For any $\delta > 0$ there is a cone C_{δ} such that $d_H(C_{\delta}, C) < \delta$ and with the following property: potentials of the form

$$V = \chi_{C_{\delta}}\varphi$$

where φ is smooth enough (roughly $C^{1/4}$) and non-zero at the vertex always scatter.

Non-spherical cones

Source scattering (easier)

Theorem (B.–Pohjola submitted 2021)

A source $f = \chi_C \varphi$ for $(\Delta + k^2)u = f$ scatters for any k > 0 when φ is smooth enough and non-zero at the vertex of the cone C when

$$\int_{\mathbb{S}^2\cap C} Y_2^m dS \neq 0$$

for $m \in \{-2, -1, 0, +1, +2\}$ and Y_2^m is the spherical harmonic of degree 2. This is true if C fits into a thin enough spherical cone.

Non-spherical cones

Source scattering (easier)

Theorem (B.–Pohjola submitted 2021)

A source $f = \chi_C \varphi$ for $(\Delta + k^2)u = f$ scatters for any k > 0 when φ is smooth enough and non-zero at the vertex of the cone C when

$$\int_{\mathbb{S}^2\cap C} Y_2^m dS \neq 0$$

for $m \in \{-2, -1, 0, +1, +2\}$ and Y_2^m is the spherical harmonic of degree 2. This is true if C fits into a thin enough spherical cone. "Thin enough" means $\cos \theta \leq 1/\sqrt{3}$. The magic angle is $\approx 54.74^{\circ}$.

Scattering screens

A flat screen $\Omega = \Omega_0 \times \{0\}$ with $\Omega_0 \subset \mathbb{R}^2$ simply connected, bounded and smooth. Scattering from such a screen:

$$egin{aligned} & (\Delta+k^2)u^s=0, & & \mathbb{R}^3\setminus\overline{\Omega}, \ & u^i+u^s=0, & & \Omega, \ & r(\partial_r-ik)u^s o 0, & & r=|x| o\infty. \end{aligned}$$

Let Ω, Ω' be flat screens, k > 0, u^i an arbitary incident wave, and $u^s, u^{s'}$ corresponding scattered waves.

Theorem (B.–Päivärinta–Sadique 2020)

• If $u^i(x_1, x_2, x_3) + u^i(x_1, x_2, -x_3) \neq 0$ for some x and $u^s_{\infty} = u^{s'}_{\infty}$ then $\Omega = \Omega'$.

• If
$$u^i(x_1, x_2, x_3) + u^i(x_1, x_2, -x_3) = 0$$
 for all x then $u^s_{\infty} = u^{s'}_{\infty} = 0$.

What about the future?

New directions: free boundary methods. Will they solve the problem?

What is the problem?

What about the future?

New directions: free boundary methods. Will they solve the problem?

What is the problem?

What geometric features of a scatterer cause arbitrary

- a) plane waves,
- b) Herglotz or other waves
- to give non-trivial scattering?

What about the future?

New directions: free boundary methods. Will they solve the problem?

What is the problem?

What geometric features of a scatterer cause arbitrary

- a) plane waves,
- b) Herglotz or other waves

to give non-trivial scattering?

What guarantees vanishing far-fields?

Happy birthday Gunther!