Inverse problems with one measurement

Emilia Blåsten

Research conducted at The Institute for Advanced Study, The Hong Kong University of Science and Technology

> Inverse Days 2018 Aalto University, December 12, 2018

Scattering theory

=

Mathematical scattering theory: measurements

Measurement: A_{u^i} is the far-field pattern of the scattered wave

$$u^{s}(x) = \frac{e^{ik|x|}}{|x|^{(n-1)/2}} A_{u^{i}}\left(\frac{x}{|x|}\right) + \mathcal{O}\left(\frac{1}{|x|^{n/2}}\right)$$

4 / 24

Inverse problems

Given the far-field map $u^i \mapsto A_{u^i}$, recover V or its support Ω .

Inverse problems

Given the far-field map $u^i \mapsto A_{u^i}$, recover V or its support Ω .

Solved when

- full far-field map given for all large frequencies (Saito 84),
- ▶ full far-field map given for a single frequency (Sylvester–Uhlmann 87 $n \ge 3$ + Bukhgeim 07 n = 2),
- + countless other variations

Inverse problems

Given the far-field map $u^i \mapsto A_{u^i}$, recover V or its support Ω .

Solved when

- full far-field map given for all large frequencies (Saito 84),
- ▶ full far-field map given for a single frequency (Sylvester–Uhlmann 87 $n \ge 3$ + Bukhgeim 07 n = 2),
- + countless other variations

Focus on single measurement: A_{u^i} given only for a single u^i .

Schiffer's problem: can a single measurement determine Ω ?

What about in physics?

Lord Rutherford's gold-foil experiment

Single incident wave

Scattering theory

Rutherford experiment's conclusions

measurement + *a*-priori information = conclusion

Theorem (B.–Päivärinta–Sylvester CMP 14) The potential $V = \chi_{[0,\infty[^n}\varphi, \varphi(0) \neq 0$ always scatters.

Theorem (B.–Päivärinta–Sylvester CMP 14) The potential $V = \chi_{[0,\infty[^n}\varphi, \varphi(0) \neq 0$ always scatters.

For any incident wave $u^i \neq 0$ we have $A_{u^i} \neq 0$.

Theorem (B.–Päivärinta–Sylvester CMP 14) The potential $V = \chi_{[0,\infty[^n}\varphi, \varphi(0) \neq 0$ always scatters.

For any incident wave $u^i \neq 0$ we have $A_{u^i} \neq 0$.

However A_{u^i} can become arbitrarily small with $\|u^i\| \ge C > 0$. (TE)

Some follow-up corner scattering results

- Päivärinta–Salo–Vesalainen: 2D any angle, 3D almost any spherical cone
- Hu–Salo–Vesalainen: smoothness reduction, new arguments, polygonal scatterer probing
- Elschner–Hu: 3D any domain having two faces meet at an angle, and also curved edges
- Liu–Xiao: electromagnetic waves

Some follow-up corner scattering results

- Päivärinta–Salo–Vesalainen: 2D any angle, 3D almost any spherical cone
- Hu–Salo–Vesalainen: smoothness reduction, new arguments, polygonal scatterer probing
- Elschner–Hu: 3D any domain having two faces meet at an angle, and also curved edges
- Liu–Xiao: electromagnetic waves

Injectivity of the Schiffer's problem for polyhedra:

Theorem (HSV+EH)

Let P, P' be convex polyhedra and V = $\chi_P \varphi$, V = $\chi_{P'} \varphi'$ for admissible functions φ, φ' . Then

$$P \neq P' \implies A_{u^i} \neq A'_{u^i} \quad \forall u^i \neq 0$$

Any *single* incident wave determines P in the class of polyhedral penetrable scatterers.

Some follow-up corner scattering results

- Päivärinta–Salo–Vesalainen: 2D any angle, 3D almost any spherical cone
- Hu–Salo–Vesalainen: smoothness reduction, new arguments, polygonal scatterer probing
- Elschner–Hu: 3D any domain having two faces meet at an angle, and also curved edges
- Liu–Xiao: electromagnetic waves

Injectivity of the Schiffer's problem for polyhedra:

Theorem (HSV+EH)

Let P, P' be convex polyhedra and V = $\chi_P \varphi$, V = $\chi_{P'} \varphi'$ for admissible functions φ, φ' . Then

$$P \neq P' \implies A_{u^i} \neq A'_{u^i} \quad \forall u^i \neq 0$$

Any *single* incident wave determines P in the class of polyhedral penetrable scatterers.

However Ikehata's enclosure method gives roughly the same!

My work while in Hong Kong

Stability of polygonal scatterer probing

Non-vanishing total wave

Theorem (B., Liu, preprint)

Let u^i be an incident wave and let $V = \chi_P \varphi$, $V' = \chi_{P'} \varphi'$ be admissible with $|u|, |u'| \neq 0$ in B_R . If

$$\|A_{u^i} - A'_{u^i}\|_{L^2(\mathbb{S}^{n-1})} < \varepsilon$$

then

$$d_{H}(P, P') \leq C(\ln \ln ||A_{u^{i}} - A'_{u^{i}}||_{2}^{-1})^{-\eta}$$

for some $\eta > 0$.

Lower bound for far-field pattern

Arbitrary Herglotz wave

Theorem (B., Liu, JFA 2017) Let uⁱ be a normalized Herglotz wave,

$$u^{i}(x) = \int_{\mathbb{S}^{n-1}} e^{ik\theta \cdot x} g(\theta) d\sigma(\theta), \qquad \|g\|_{L^{2}(\mathbb{S}^{n-1})} = 1,$$

and let $V = \chi_P \varphi$ be admissible. Then

$$||A_{u^i}||_{L^2(\mathbb{S}^{n-1})} \ge C_{||P_N||,V} > 0$$

where the Taylor expansion of u^i at the corner x_c begins with P_N , and $||P_N|| = \int_{\mathbb{S}^{n-1}} |P_N(\theta)| d\sigma(\theta)$.

Mistake?

F. Cakoni: "Incident waves that approximate transmission eigenfunctions produce arbitrarily small far-field patterns." From apparent contradiction to inspiration

Theorem (B., Liu, + B., Li, Liu, Wang, JFA + IP 2017 + preprint)

Let the potential $V = \chi_{\Omega} \varphi$ be admissible. Let $v, w \neq 0$ be transmission eigenfunctions:

$$egin{aligned} & (\Delta+k^2)v=0, & \Omega \ & (\Delta+k^2(1+V))w=0, & \Omega \ & w-v\in H^2_0(\Omega). \end{aligned}$$

Under C^{α} -smoothness of v near x_c , we have

$$v(x_c) = w(x_c) = 0$$

at every corner point x_c of Ω .

Transmission eigenfunction localization

Piecewise constant recovery

Injectivity of piecewise constant potential probing:

Theorem (B., Liu, preprint)

Let Σ_j , j = 1, 2, ... be bounded convex polyhedra in an admissible geometric arrangement (think pixels/voxels) and $V = \sum_j V_j \chi_{\Sigma_j}$, $V' = \sum_j V'_j \chi_{\Sigma_j}$ for constants $V_j, V'_j \in \mathbb{C}$. Then

$$V \neq V' \implies A_{u^i} \neq A'_{u^i} \quad \forall u^i(x) = e^{ik\theta \cdot x}$$

if k > 0 small or $|u| + |u'| \neq 0$ at each vertex.

A *single* incident plane wave determines V in the class of discretized penetrable scatterers.

Generalizations and limitations

unique determination of corner location and value

Generalizations and limitations

- unique determination of corner location and value
- If Σ_j not known in advance: both (Σ_j)_{j=1}[∞] and V = Σ_j V_jχ_{Σ_j} uniquely determined by a single measurement if geometry known to be nested

Generalizations and limitations

- unique determination of corner location and value
- if Σ_j not known in advance: both (Σ_j)_{j=1}[∞] and V = Σ_j V_j χ_{Σ_j} uniquely determined by a single measurement if geometry known to be nested

method cannot yet be shown to distinguish between

V_1	V_2
V_3	V_4

Inverse source problem

$$(\Delta + k^2)u = f,$$
 $\lim_{r \to \infty} (\partial_r - ikr)u = 0$

can one have $f \neq 0$ but $u_{\infty} = 0$?

Inverse source problem

can one Recall:

$$(\Delta+k^2)u=f, \qquad \lim_{r
ightarrow\infty}\left(\partial_r-ikr
ight)u=0$$

have $f
eq 0$ but $u_\infty=0?$

$$u_{\infty}(heta) = c_{k,n}\hat{f}(k heta).$$

Inverse source problem

$$(\Delta + k^2)u = f,$$
 $\lim_{r \to \infty} (\partial_r - ikr)u = 0$

can one have $f \neq 0$ but $u_{\infty} = 0$? Recall:

$$u_{\infty}(\theta) = c_{k,n}\hat{f}(k\theta).$$

Yes: let

$$f(x) = \begin{cases} 1, & |x| < r_0 \\ 0, & |x| \ge r_0 \end{cases}$$

where $r_0 > 0$.

Inverse source problem

$$(\Delta + k^2)u = f,$$
 $\lim_{r \to \infty} (\partial_r - ikr) u = 0$

can one have $f \neq 0$ but $u_{\infty} = 0$? Recall:

$$u_{\infty}(heta) = c_{k,n}\hat{f}(k heta).$$

Yes: let

$$f(x) = \begin{cases} 1, & |x| < r_0 \\ 0, & |x| \ge r_0 \end{cases}$$

where $r_0 > 0$. Then

$$u_{\infty}(\theta) = c_{k,n}\hat{f}(k\theta) = c'_{k,n}J_{n/2}(kr_0) = 0$$

if kr_0 is a zero of the Bessel function of order n/2.

Always scattering Smallness 1/2

A small uniform ball always scatters!

Always scattering Smallness 1/2

A small uniform ball always scatters!

Also: any source with small shape always scatters!

Theorem (B., Liu, preprint)

Let $n \geq 2$, $R_m, k \in \mathbb{R}_+$, $0 \leq \alpha \leq 1$. Let $\Omega \subset \mathbb{R}^n$ be a bounded Lipschitz domain of diameter at most R_m and whose complement is connected. Let Ω_c be a component of Ω . The source $f = \chi_\Omega \varphi$ radiates a non-zero far-field pattern at wavenumber k if

$$\left(\operatorname{\mathsf{diam}}(\Omega_c)
ight)^lpha \leq C rac{\sup_{\partial\Omega_c} |arphi|}{\left\|arphi
ight\|_{\mathcal{C}^lpha(\overline{\Omega}_c)}},$$

for some $C = C(k, R_m, n) > 0$.

Smallness 2/2

Proof. Suppose $(\Delta + k^2)u = \chi_{\Omega}\varphi$ and $u_{\infty} = 0$. Then $u_{|\Omega^{\complement}} = 0$, so $u_{|\Omega_c} \in H^2_0(\Omega_c)$ and $(\Delta + k^2)u = \varphi$ in Ω_c .

Smallness 2/2

Proof. Suppose $(\Delta + k^2)u = \chi_{\Omega}\varphi$ and $u_{\infty} = 0$. Then $u_{|\Omega^{\complement}} = 0$, so $u_{|\Omega_c} \in H_0^2(\Omega_c)$ and $(\Delta + k^2)u = \varphi$ in Ω_c . Set $g = \varphi - k^2 u$. Then elliptic regularity implies $g \in C^{\alpha}(\overline{\Omega}_c)$ with $\|g\|_{C^{\alpha}} \leq C(n, k, R_m) \|\varphi\|_{C^{\alpha}}$. Moreover

$$\int_{\Omega_c} g(x) dx = \int_{\Omega_c} 1 \cdot \Delta u dx = 0$$

because $u = \partial_{\nu} u = 0$ in $\partial \Omega_c$.

Smallness 2/2

Proof. Suppose $(\Delta + k^2)u = \chi_{\Omega}\varphi$ and $u_{\infty} = 0$. Then $u_{|\Omega^{\complement}} = 0$, so $u_{|\Omega_c} \in H_0^2(\Omega_c)$ and $(\Delta + k^2)u = \varphi$ in Ω_c . Set $g = \varphi - k^2 u$. Then elliptic regularity implies $g \in C^{\alpha}(\overline{\Omega}_c)$ with $\|g\|_{C^{\alpha}} \leq C(n, k, R_m) \|\varphi\|_{C^{\alpha}}$. Moreover

$$\int_{\Omega_c} g(x) dx = \int_{\Omega_c} 1 \cdot \Delta u dx = 0$$

because $u = \partial_{\nu} u = 0$ in $\partial \Omega_c$. Let $p \in \partial \Omega_c$. Then

$$\varphi(p)m(\Omega_c) = g(p)m(\Omega_c) = -\int_{\Omega_c} (g(x) - g(p))dx$$

Smallness 2/2

Proof. Suppose $(\Delta + k^2)u = \chi_{\Omega}\varphi$ and $u_{\infty} = 0$. Then $u_{|\Omega^{\complement}} = 0$, so $u_{|\Omega_c} \in H_0^2(\Omega_c)$ and $(\Delta + k^2)u = \varphi$ in Ω_c . Set $g = \varphi - k^2 u$. Then elliptic regularity implies $g \in C^{\alpha}(\overline{\Omega}_c)$ with $\|g\|_{C^{\alpha}} \leq C(n, k, R_m) \|\varphi\|_{C^{\alpha}}$. Moreover

$$\int_{\Omega_c} g(x) dx = \int_{\Omega_c} 1 \cdot \Delta u dx = 0$$

because $u = \partial_{\nu} u = 0$ in $\partial \Omega_c$. Let $p \in \partial \Omega_c$. Then

$$\varphi(p)m(\Omega_c) = g(p)m(\Omega_c) = -\int_{\Omega_c} (g(x) - g(p))dx$$

Hence

$$|\varphi(p)| m(\Omega_c) \leq \|g\|_{C^{\alpha}} \int_{\Omega_c} |x-p|^{\alpha} dx \leq \|g\|_{C^{\alpha}} m(\Omega_c) (\operatorname{diam}(\Omega_c))^{\alpha}.$$

High curvature case

Is smallness the true cause for non-scattering?

High curvature case

Is smallness the true cause for non-scattering?

No: high curvature!

Theorem (B., Liu, preprint)

Let $\Omega \subset \mathbb{R}^n$, $n \geq 2$, be a bounded domain. Assume that $p \in \partial \Omega$ is an admissible K-curvature point. Also assume p connected to infinity outside of Ω . Consider the source $\chi_{\Omega}\varphi$, $\varphi \in C^{\alpha}(\mathbb{R}^n)$. If

 $|\varphi(p)| \geq \mathcal{C}(\ln K)^{(n+3)/2}K^{-\delta}$

then the source scatters a non-zero far-field pattern at wavenumber k.

Here $\delta > 0$ depends on the geometric parameters, and C depends on the a-priori parameters of the K-curvature point, the wavenumber k, the upper bound for the diameter of Ω , and the upper bound for $\|\varphi\|_{C^{\alpha}}$.

Admissible *K*-curvature point

Inverse source problem, Schiffer's problem

$$(\Delta + k^2)u = f = \chi_{\Omega}\varphi, \qquad \lim_{r \to \infty} (\partial_r - ikr)u = 0$$

Can $u_{\infty}(\theta) = c\hat{f}(k\theta)$ determine Ω given a fixed k?

Inverse source problem, Schiffer's problem

$$(\Delta + k^2)u = f = \chi_{\Omega}\varphi, \qquad \lim_{r \to \infty} (\partial_r - ikr)u = 0$$

Can $u_{\infty}(\theta) = c\hat{f}(k\theta)$ determine Ω given a fixed k?

Unique determination:

- ► $u_{\infty} = u'_{\infty} \Longrightarrow \Omega = \Omega'$ for convex polyhedral shapes (corner scattering). Also for elasticity (with Lin), electromagnetism (with Liu, Xiao),
- u_∞ = u'_∞ ⇒ Ω ≈ Ω' for convex polyhedral shapes whose corners have been smoothened to admissible K-curvature points (high curvature scattering),
- $u_{\infty} = u'_{\infty} \Longrightarrow \Omega \approx \Omega'$ for well-separated collections of small scatterers (small source scattering).

Thank you for your attention!