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Projects in chronological order

Published work:
I 2D inverse scat
I transmission eigenvalues
I non-scattering energies, + hyperbolic

Work in progress:
I new estimates
I scattering solutions for general PDE?
I building on Rakesh–Uhlmann-type backscattering
I 1D water pipe networks
I LaTeX on the web



Inverse scattering problem in 2D
with

Oleg Imanuvilov (Colorado State University),
Masahiro Yamamoto (University of Tokyo),

Yang Yang (Purdue University)



Inverse problems for partial differential equations

The Calderón problem: given an open set Ω ⊂ Rn and all
(voltage, current flux) pairs (v , f ) ∈ H1/2(∂Ω)× H−1/2(∂Ω)
satisfying

∇ · γ∇u = 0 Ω
u = v ∂Ω

γ∂νu = f ∂Ω

deduce the conductivity γ inside Ω.
I statement + linearized problem: Calderón (60’s / 1980)
I 3D isotropic: Sylvester & Uhlmann (1987)
I 2D isotropic: Astala & Päivärinta (2006)



Inverse potential scattering
Inverse scattering: given

Cq =
{

(u|∂Ω, ∂νu|∂Ω)
∣∣∣ (∆ + q)u = 0, u ∈ H1(Ω)

}
,

deduce the scattering potential q inside Ω.

With potential reaching infinity: given the scattering matrix Sq(λ)
for a fixed frequency or wavenumber λ, determine q.

q(x)

uinc(x)

uscat(x)

(∆ + q + λ2)(uinc + uscat) = 0
Sq(λ) relates the behaviours of uinc and uscat at infinity.



Important papers (smoothness p.o.v.)

I Calderón 1980 (manuscript from 60’s): linearised problem
I Kohn–Vogelius 1984: piecewise analytic γ
I Sylvester–Uhlmann 1987: Ck γ and q in 3D
I Alessandrini 1988: logarithmic stability result
I Astala–Päivärinta 2006: arbitrary γ ∈ L∞(Ω) in 2D
I Bukhgeim 2008: 2D uniqueness q ∈W 1,p(Ω)
I Novikov–Santacesaria 2010: stability for q ∈ C 2(Ω) in 2D
I B.–Imanuvilov–Yamamoto’s contributions: uniqueness q ∈ Lp,

stability q ∈W ε,p in 2D
I Haberman–Tataru 2013: 3D uniqueness, γ ∈ C 1

I Caro–Rogers 2015: 3D uniqueness, γ Lipschitz

Partial data results avoided in this list!
Also, among others: Nachman, Liu, Jerison, Kenig, . . .



Typical way of solving 2D potential scattering inverse
problems

If q1 and q2 give the same measurement results, then∫
(q1 − q2)u1u2dm = 0

for all admissible uj satisfying

(∆ + qj)uj = 0.

Complex Geometric Optics solutions in 2D (Bukhgeim 2008)

u(z) = eiτΦ(z)(1 + ε(z)), ∂Φ = 0.

Stationary phase method (if e.g. Φ(z) = z2)

lim
τ→∞

2τ
π

∫
C

eiτ(Φ+Φ)(q1 − q2)(z)dm(z) = (q1 − q2)(z0)



Contributions by myself and collaborators
Let Ω ⊂ R2 be a bounded Lipschitz domain and p > 2 .

Theorem (Imanuvilov–Yamamoto 2012)
Assume that q1, q2 ∈ Lp(Ω) with Cq1 = Cq2 . Then q1 = q2.

Theorem (B. 2013)
Let ε > 0 and M <∞. Then there exists constants C , d0, θ > 0
such that

‖q1 − q2‖L2(Ω) ≤ C
(

ln 1
d(Cq1 , Cq2)

)−θ

if q1, q2 ∈W ε
p (Ω) with norms at most M and d(Cq1 , Cq2) ≤ d0.

Conjecture (B.–Yang)
Assume that q1, q2 ∈ L(2,1)(R2) ∩ e−c|z|2L1(R2) ∀c > 0 with
Sq1(0) = Sq2(0). Then q1 = q2.
What is the scattering matrix at 0 energy?!



Interior transmission eigenvalues
with

Lassi Päivärinta (Tallinn University of Technology)



The interior transmission problem

The interior transmission problem (of the Helmholtz equation) for
the potential V is the following boundary value problem:

(∆− λ)v = 0 in Ω,
(∆− λ(1 + V ))w = 0 in Ω, (ITP)

v − w ∈ H2
0 (Ω).

We say that λ ∈ C is a transmission eigenvalue (TE) if (ITP) has
non-trivial solutions 0 6= v ∈ L2

loc and 0 6= w ∈ L2
loc.



Interior Transmission Problem
Why interesting:

I generalized eigenvalue problem (analytic Fredholm theory)
I resonant frequencies for penetrable scatterers
I ITE’s show up in the far field data
I can V be determined from ITP spectrum?

Some history:
I 86’, 88’ Kirsch, Colton–Monk: ITP posed
I 89’, 91’ Colton–Kirsch–Päivärinta, Rynne–Sleeman:

discreteness of ITE
I 91’–08’ nothing. . .
I 07’, 09’ Cakoni–Colton–Monk, Cakoni–Colton–Haddar:

qualitative information about V from ITE’s
I 08’ Päivärinta–Sylvester: existence for general scatterers
I 10’ Cakoni–Gintides–Haddar: infinitely many ITE’s
I 10’ Cakoni–Colton–Haddar: ITE’s can be deduced from

far-field data
I 10’+: explosion of interest



Our goal was

Cakoni, Gintides, Haddar 2010: “We think that some interesting
open problems [are] . . . , . . . and the completeness of the
eigensystem of the interior transmission problem.”

With Päivärinta we proved the completeness of a system of
generalized eigenstates (2013).



Characterization of TE’s

(∆− λ)v = 0 in Ω,
(∆− λ(1 + V ))w = 0 in Ω,

v − w ∈ H2
0 (Ω).

implies for u = v − w

u ∈ H4 ∩ H2
0 (Ω),

T (λ)u := (∆− λ(1 + V )) 1
V (∆− λ)u = 0.



Reduction to a higher-order eigenvalue problem

Under some conditions

0 6= λ ∈ C is a TE

⇐⇒

there is 0 6= u ∈ H2
0 (Ω) solving the following quadratic eigenvalue

problem

T (λ)u = (A0 + A1λ+ A2λ
2)u = 0,

A0 = ∆ 1
V ∆, A1 = − 1

V ∆−∆ 1
V −∆, A2 = 1 + 1

V .



What are generalized transmission eigenstates?

Keywords: root vectors, chain of associated elements, Keldysh

Let λ0 be a TE and B0,B1 and B2 the Taylor coefficients centered
at λ0:

T (λ) = B0 + B1(λ− λ0) + B2(λ− λ0)2.

Definition
The generalized eigenspace Eλ0 is the closed linear space spanned
by the vectors (uj)∞j=0, uj ∈ H2

0 (Ω), where

B0u0 = 0, u0 6= 0,
B1u0 + B0u1 = 0,
B2uj−2 + B1uj−1 + B0uj = 0, j = 2, 3, . . .



An easier definition

A vector w is a generalized eigenvector of a matrix M if

(M − λ0)kw = 0

for some eigenvalue λ0 and k ∈ N.

Remark
Let T (λ) = A0 + A1λ+ A2λ

2. Then uj , j = 0, 1, . . . are
generalized eigenfunctions iff there is vj such that

(A− λ0)j+1
(

uj
vj

)
:= 0, where A =

(
0 A−1

2
−A0 −A1A−1

2

)
.

for j = 0, 1, . . .



Completeness result

Theorem (B.–Päivärinta, 2013)
Assume that V ∈ C∞(Ω) and V > 0 on Ω. Then the space⊕

λ∈C Eλ is complete in L2(Ω).

Tools:
I generalized Shapiro-Lopatinsky conditions by Agranovich and

Vishik (1964) to invert T (λ)
I Nevanlinna theory to estimate ‖T (λ)−1‖
I the analytic Fredholm theorem

Names:
I Keldysh, Agranovich, Robert and Lai, Robbiano



Non-scattering energies
with

Valter Pohjola (Uppsala University),
Lassi Päivärinta (Tallinn University of Technology),

John Sylvester (University of Washington),
Esa Vesalainen (Aalto University)



Single frequency plane-wave scattering

V (x)

eikθ·x

us(x , θ)

The total wave u satisfies(
∆ + k2(1 + V )

)
u = 0,

where V models a perturbation to the background wave speed and

u = eikθ·x

incident wave

+ us(x , θ)

scattered wave



More general and realistic incident waves

ug (x) = ui
g (x) + eik|x |

|x | Ag

( x
|x |

)
+ O

(
1
|x |2

)
,

where
ui

g (x) =
∫
S2

eikx ·θg(θ)dσ(θ)

is a superposition of plane-waves and Ag is the scattering
amplitude of the scattered wave.



Vanishing Scattering Amplitude?

Question: Can there be g ∈ L2(Sn−1), g 6= 0 such that Ag ≡ 0?

Consequence:

Rellich’s theorem =⇒ us
g ≡ 0 Rn \ supp V .

Recall that

ug =: w
= ui

g =: v
+ us

g
compact support

Now v and w satisfy(
∆ + k2(1 + V )

)
w = 0 in Ω(

∆ + k2)v = 0 in Ω
w = v on ∂Ω

∂
∂νw = ∂

∂ν v on ∂Ω

This is the interior transmission problem.



Non Scattering Energies

Definition
λ > 0 is a non-scattering energy (NSE) if the scattering amplitude
is not injective, i.e. there is an incident wave

ui
g (x) =

∫
Sn−1

eikθ·x g(θ)dσ(θ), k =
√
λ,

such that the scattered wave us has zero far field, so Ag ≡ 0.

Remark
Non-scattering energies are transmission eigenvalues.

Theorem
{Transmission eigenvalues} 6= {non-scattering energies}
(B.–Päivärinta–Sylvester 2014, Päivärinta–Salo–Vesalainen
submitted 2014)



Theorem and Consequences

Theorem (B.–Päivärinta–Sylvester, 2014)
Let V = χCϕ, C = ]0,∞[n and ϕ with bounded support and
ϕ(0) 6= 0. Then V scatters all incident waves at all energies.

Remark
Two penetrable scatterers whose difference is non-scattering at
energy λ can be distinguished from a single scattering
measurement!

Theorem (Hu–Salo–Vesalainen, 2016)
The shape of polygonal penetrable scatterers can be deduced from
any single measurement in 2D. The same is true for rectangular
scatterers in 3D.



Results used in the proof

Proposition
If v is a non-scattering incident wave, then∫

Vvwdx = 0

for all w ∈ L1
loc ,

(
∆ + k2(1 + V )

)
w = 0.

Proposition
Let H be a harmonic polynomial. If

∫
x≥0 eρ·x H(x)dx = 0 for all

ρ ∈ Cn, ρ · ρ = 0, <ρ < 0, then H ≡ 0.

Proposition
There is w ∈ Lp

loc , 2 ≤ p <∞, (∆ + k2(1 + V ))w = 0, such that

w(x) = eρ·x
(
1 + ψ(x)

)
, ‖ψ‖Lp(Ω) ≤ CΩ |=ρ|−1 .



Related things

Theorem (B.–Pohjola–Vesalainen, almost submitted)
In the hyperbolic space Hn hyperbolic rectangular (n ∈ N) or
spherical (n ∈ {2, 3}) penetrable cones always scatter.

Conjecture
Let M be a symmetric positive definite matrix. Let H be a
polynomial and P(D)H = ∇ · (M∇H) = 0. If∫

x≥0
eρ·x H(x)dx = 0

for all ρ ∈ Cn, P(ρ) = 0, <ρ < 0, then H ≡ 0.

Corollary
Polygonal scatterers always scatter also in 3D and higher.



New estimates for general PDE’s
with

John Sylvester (University of Washington)

work in progress



New estimates for direct scattering theory
Old well-known estimates

Let (∆ + k2)u = f . then
I Agmon (1975), δ > 1

2∥∥∥(1 + |x |2)−δ/2u
∥∥∥

L2(Rn)
≤ C

k

∥∥∥(1 + |x |2)δ/2f
∥∥∥

L2(Rn)

I Agmon–Hörmander (1976) Aj = {2j−1 < |x | < 2j+1},
A0 = {|x | < 2}.

sup
j≥0

√
2j−1

‖u‖L2(Aj ) ≤
C
k

∞∑
j=0

√
2j ‖f ‖L2(Aj )

I Kenig–Ruiz–Sogge (1987) 1
q1

+ 1
q2

= 1, 2
n+1 ≤

1
q1
− 1

q2
≤ 2

n

‖u‖Lq2 (Rn) ≤ Ckn( 1
q1
− 1

q2
)−2 ‖f ‖Lq1 (Rn)

All of the above not satisfactory from a physical point of view:
dilation, rotation, translation, behaviour w.r.t wavelength. . .



New estimates for direct scattering theory

Theorem (Sylvester 2013 or earlier)
If supp f ⊂ Ωs then (∆ + k2)u = f has a scattering solution u. It
satisfies

‖u‖L2(Ωr ) ≤ C
√

diam(Ωr )
√

diam(Ωs)
k ‖f ‖L2(Ωs )

for any bounded Ωr .

Corollary
Agmon-Hörmander estimates follow.

Goal: Same estimate for P(D)u = f , P constant coefficient,
P−1(0) non-singular.
Difficulty: Generality of P. Meta-inverse problem!



New CGO-estimate
Fundamental estimate, Sylvester–Uhlmann 1987, if ρ · ρ = 0 then

‖(∆− 2ρ · ∇)−1f ‖L2(Ω) ≤
C
|ρ|
‖f ‖L2(Ω)

Theorem (B.–Sylvester, to be published)
If 1

p2
− 1

p1
< 1

n−1 and p2 ≤ p1

‖(∆− 2ρ · ∇)−1f ‖L∞(<ρ,L̂p2 (<ρ⊥))

≤ C |ρ|(n−1)( 1
p2
− 1

p1
)−1 ‖f ‖L1(<ρ,L̂p1 (<ρ⊥))

Corollary
If supp f ⊂ Ωs , 1

q1
− 1

q2
< 1

n−1 and q1 ≤ 2 ≤ q2 then

‖(∆− 2ρ · ∇)−1f ‖Lq2 (Ωw )

≤ Cd(Ωw )1/q2d(Ωs)1/q1 |ρ|(n−1)( 1
q1
− 1

q2
)−1 ‖f ‖Lq1 (Ωs ) .



New estimates for direct scattering theory
Idea of the proof in 1D

(∂2
x + k2)u = f =⇒ (−ξ2 + k2)û = f̂

û = − f̂
ξ2 − k2 = − f̂

2k

( 1
ξ − k −

1
ξ + k

)
û “scattered” := − f̂

2k

( 1
ξ − (k − i0) −

1
ξ + (k − i0)

)

F
{√

2πi H(x) eizx}(ξ) = 1
ξ − z , if Im z > 0.

Result

u “scattered” = f ∗ ie−ik|x |

2k , ‖u‖L∞ ≤
1

2k ‖f ‖L1



New estimates for direct scattering theory
Idea of the proof in 2D 1/3

(∂2
x + ∂2

y + k2)u = f =⇒ (−ξ2
1 − ξ2

2 + k2)û = f̂

û = f̂
−ξ2

1 − ξ2
2 + k2 = −f̂(

ξ1 −
√

k2 − ξ2
2

)(
ξ1 +

√
k2 − ξ2

2

)

û “scattered” := −f̂
2
√

k2 − ξ2
2

 1
ξ1 −

√
k2 − ξ2

2

− 1
ξ1 +

√
k2 − ξ2

2


where √. . . chosen as a certain branch in C!



New estimates for direct scattering theory
Idea of the proof in 2D 2/3

Result If f̂ ≡ 0 on
∣∣k2 − ξ2

2
∣∣ < δ2 then

u = f ∗x1 F−1
2

ie−i
√

k2−ξ2
2 |x1|

2
√

k2 − ξ2
2

,

sup
x1
‖u‖L2(x2) ≤

1
2δ

∫ ∞
−∞
‖f ‖L2(x2) dx1.

Lemma Cut-off’s do not cause problems.



New estimates for direct scattering theory
Idea of the proof in 2D 3/3

Lemma A suitable partition of unity exists.

Picture courtesy of J. Sylvester

Corollary If supp f ⊂ Ωs , and d(Ωs) <∞ then

‖u‖L2(Ωw ) ≤
C
δ

√
d(Ωw )d(Ωs) ‖f ‖L2(Ωs )

for any bounded Ωw .
For which PDEs will this work?



Inverse backscattering
by

Rakesh (University of Delaware),
Gunther Uhlmann (University of Washington &

HKUST)



Inverse backscattering
Point source backscattering by Rakesh–Uhlmann

Wave generated at a ∈ R3, t = 0 for potential qj ∈ C∞0 (B(0, 1)):

∂2

∂t2 Ua
j (x , t) =

(
∆x + qj(x)

)
Ua

j (x , t) + δ(x − a, t),

Ua
j (x , t) = 0, t < 0

Theorem (Rakesh–Uhlmann 2015)
Assume Ua

1 (a, t) = Ua
2 (a, t) for all a ∈ S(0, 1) and 0 < t < 2.

Then q1 = q2 under the a-priori assumption of angularly controlled
q1 − q2

‖Ωij(q1 − q2)‖L2(S(0,ρ)) ≤ C ‖q1 − q2‖L2(S(0,ρ))

for all 0 < ρ < 1 and angular derivatives Ωij .



Angular derivatives Ωij?

Three vector fields that span the tangent space TS(0, 1):

Why three? -Hairy ball theorem.



Proof idea 1/3

I Formula for boundary measurements

Ua
1 (a, 2τ)− Ua

2 (a, 2τ) =
M(q1 − q2)(a, τ)

8π +
∫
|x−a|≤τ

(q1 − q2)(x)k(x , τ, a)dx

where
Mf (a, τ) = 1

4πτ2

∫
S(x ,τ)

f (y)dSy

and k, ∂τk smooth.

Remark
This is the only part where knowledge of PDE’s are required!



Proof idea 2/3

I Formula relating f to Mf

f
(
(1−τ)a

)
=

2∂τ
(
τMf (a, τ)

)
1− τ + 1

2π(1− τ)

∫
S(a,τ)

α · ∇f (y)
sinφ dSy

∣∣f ((1− τ)a
)∣∣2 ≤

∣∣∂τ (τMf (a, τ)
)∣∣2 +

∑
i<j
∫

S(a,τ)
|Ωij f (y)|2√
|y |−(1−τ)

dSy

(1− τ)3



Proof idea 3/3

I Gronwall’s inequality

f ′(s) ≤ C
∫ 1

s
f (r)dr =⇒ f ≡ 0



Inverse problem of water pipe systems
with

Mohamed Ghidaoui (HKUST)



Knowledge Gaps
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Leaks? Blockages?

Simplest model: Question of 1D wave/transport equation
I Pipe without leaks

A(x)
c2

∂2H
∂t2 −

∂

∂x

(
A(x)∂H

∂x

)
= 0

Solution known since 70’s
I Pipe with leak at x = xL of flow QL

A(x)g
c2

∂H
∂t + ∂(A(x)V )

∂x = QLδ(x − xL)
∂V
∂t + g ∂H

∂x = − V
A(x) QLδ(x − xL)

QL depends on H(xL)!!
I Network?



LATEX-quality mathematics on the web







Thank you for your attention!


