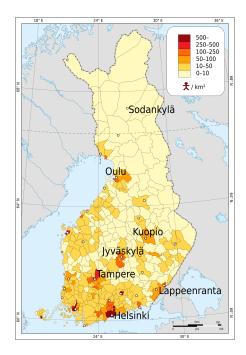
Non-scattering energies, new resolvent estimates and other projects

Eemeli Blåsten

Hong Kong University of Science and Technology HKUST Jockey Club Institute for Advanced Study

East Asia Symposium of the IPIA February 29 – March 1, 2016





## Projects in chronological order

Published work:

- 2D inverse scat
- transmission eigenvalues
- non-scattering energies, + hyperbolic

Work in progress:

- new estimates
- scattering solutions for general PDE?
- building on Rakesh–Uhlmann-type backscattering
- 1D water pipe networks
- LaTeX on the web

# Inverse scattering problem in 2D

with

Oleg Imanuvilov (Colorado State University), Masahiro Yamamoto (University of Tokyo), Yang Yang (Purdue University) Inverse problems for partial differential equations

The Calderón problem: given an open set  $\Omega \subset \mathbb{R}^n$  and all (voltage, current flux) pairs  $(v, f) \in H^{1/2}(\partial \Omega) \times H^{-1/2}(\partial \Omega)$  satisfying

$$\nabla \cdot \gamma \nabla u = 0 \quad \Omega$$
$$u = v \quad \partial \Omega$$
$$\gamma \partial_{\nu} u = f \quad \partial \Omega$$

deduce the conductivity  $\gamma$  inside  $\Omega.$ 

- statement + linearized problem: Calderón (60's / 1980)
- 3D isotropic: Sylvester & Uhlmann (1987)
- > 2D isotropic: Astala & Päivärinta (2006)

### Inverse potential scattering

Inverse scattering: given

$${\mathcal C}_q = \left\{ (u_{|\partial\Omega}, \partial_
u u_{|\partial\Omega}) \, \Big| \, (\Delta + q) u = 0, u \in {\mathcal H}^1(\Omega) 
ight\},$$

deduce the scattering potential q inside  $\Omega$ .

With potential reaching infinity: given the scattering matrix  $S_q(\lambda)$  for a fixed frequency or wavenumber  $\lambda$ , determine q.

$$u^{inc}(x)$$

$$(\Delta + q + \lambda^{2})(u^{inc} + u^{scat}) = 0$$

 $S_q(\lambda)$  relates the behaviours of  $u^{inc}$  and  $u^{scat}$  at infinity.

## Important papers (smoothness p.o.v.)

- Calderón 1980 (manuscript from 60's): linearised problem
- Kohn–Vogelius 1984: piecewise analytic  $\gamma$
- Sylvester–Uhlmann 1987:  $C^k \gamma$  and q in 3D
- Alessandrini 1988: logarithmic stability result
- ► Astala–Päivärinta 2006: arbitrary  $\gamma \in L^\infty(\Omega)$  in 2D
- ► Bukhgeim 2008: 2D uniqueness  $q \in W^{1,p}(\Omega)$
- ► Novikov–Santacesaria 2010: stability for  $q \in C^2(\Omega)$  in 2D
- ► B.-Imanuvilov-Yamamoto's contributions: uniqueness q ∈ L<sup>p</sup>, stability q ∈ W<sup>ε,p</sup> in 2D
- ▶ Haberman–Tataru 2013: 3D uniqueness,  $\gamma \in \mathcal{C}^1$
- Caro–Rogers 2015: 3D uniqueness,  $\gamma$  Lipschitz

Partial data results avoided in this list! Also, among others: Nachman, Liu, Jerison, Kenig, ...

# Typical way of solving 2D potential scattering inverse problems

If  $q_1$  and  $q_2$  give the same measurement results, then

$$\int (q_1-q_2)u_1u_2dm=0$$

for all admissible  $u_j$  satisfying

$$(\Delta+q_j)u_j=0.$$

Complex Geometric Optics solutions in 2D (Bukhgeim 2008)

$$u(z) = e^{i au \Phi(z)}(1 + \varepsilon(z)), \quad \overline{\partial} \Phi = 0.$$

Stationary phase method (if e.g.  $\Phi(z) = z^2$ )

$$\lim_{\tau \to \infty} \frac{2\tau}{\pi} \int_{\mathbb{C}} e^{i\tau(\Phi + \overline{\Phi})} (q_1 - q_2)(z) dm(z) = (q_1 - q_2)(z_0)$$

## Contributions by myself and collaborators

Let  $\Omega \subset \mathbb{R}^2$  be a bounded Lipschitz domain and p>2 .

Theorem (Imanuvilov–Yamamoto 2012)

Assume that  $q_1, q_2 \in L^p(\Omega)$  with  $\mathcal{C}_{q_1} = \mathcal{C}_{q_2}$ . Then  $q_1 = q_2$ .

### Theorem (B. 2013)

Let  $\varepsilon>0$  and  $M<\infty.$  Then there exists constants  $C, d_0, \theta>0$  such that

$$\|q_1-q_2\|_{L^2(\Omega)}\leq C\left(\lnrac{1}{d(\mathcal{C}_{q_1},\mathcal{C}_{q_2})}
ight)^{- heta}$$

if  $q_1, q_2 \in W_p^{\varepsilon}(\Omega)$  with norms at most M and  $d(\mathcal{C}_{q_1}, \mathcal{C}_{q_2}) \leq d_0$ . Conjecture (B.-Yang) Assume that  $q_1, q_2 \in L^{(2,1)}(\mathbb{R}^2) \cap e^{-c|z|^2}L^1(\mathbb{R}^2) \quad \forall c > 0$  with  $S_{q_1}(0) = S_{q_2}(0)$ . Then  $q_1 = q_2$ . What is the scattering matrix at 0 energy?!

## Interior transmission eigenvalues with Lassi Päivärinta (Tallinn University of Technology)

## The interior transmission problem

The interior transmission problem (of the Helmholtz equation) for the potential V is the following boundary value problem:

$$(\Delta - \lambda)v = 0$$
 in  $\Omega$ ,  
 $(\Delta - \lambda(1 + V))w = 0$  in  $\Omega$ , (ITP)  
 $v - w \in H_0^2(\Omega)$ .

We say that  $\lambda \in \mathbb{C}$  is a transmission eigenvalue (TE) if (ITP) has non-trivial solutions  $0 \neq v \in L^2_{loc}$  and  $0 \neq w \in L^2_{loc}$ .

## Interior Transmission Problem

Why interesting:

- generalized eigenvalue problem (analytic Fredholm theory)
- resonant frequencies for *penetrable* scatterers
- ITE's show up in the far field data
- ► can V be determined from ITP spectrum?

Some history:

- ▶ 86', 88' Kirsch, Colton–Monk: ITP posed
- 89', 91' Colton-Kirsch-Päivärinta, Rynne-Sleeman: discreteness of ITE
- ▶ 91'-08' NOTHING...
- ▶ 07', 09' Cakoni–Colton–Monk, Cakoni–Colton–Haddar: qualitative information about V from ITE's
- > 08' Päivärinta–Sylvester: existence for general scatterers
- ▶ 10' Cakoni–Gintides–Haddar: infinitely many ITE's
- 10' Cakoni–Colton–Haddar: ITE's can be deduced from far-field data
- ► 10'+: EXPLOSION OF INTEREST

Cakoni, Gintides, Haddar 2010: "We think that some interesting open problems [are] ..., ... and the completeness of the eigensystem of the interior transmission problem."

With Päivärinta we proved the completeness of a system of generalized eigenstates (2013).

## Characterization of TE's

$$(\Delta - \lambda)v = 0$$
 in  $\Omega$ ,  
 $(\Delta - \lambda(1 + V))w = 0$  in  $\Omega$ ,  
 $v - w \in H_0^2(\Omega)$ .

implies for u = v - w

$$u \in H^4 \cap H^2_0(\Omega),$$
  
 $T(\lambda)u := (\Delta - \lambda(1+V))rac{1}{V}(\Delta - \lambda)u = 0.$ 

## Reduction to a higher-order eigenvalue problem

Under some conditions

 $\mathbf{0} \neq \lambda \in \mathbb{C}$  is a TE

 $\Leftrightarrow$ 

there is  $0 \neq u \in H^2_0(\Omega)$  solving the following quadratic eigenvalue problem

$$T(\lambda)u = (A_0 + A_1\lambda + A_2\lambda^2)u = 0,$$

$$A_0=\Deltarac{1}{V}\Delta, \quad A_1=-rac{1}{V}\Delta-\Deltarac{1}{V}-\Delta, \quad A_2=1+rac{1}{V}.$$

## What are generalized transmission eigenstates?

Keywords: root vectors, chain of associated elements, Keldysh

Let  $\lambda_0$  be a TE and  $B_0, B_1$  and  $B_2$  the Taylor coefficients centered at  $\lambda_0$ :

$$\mathcal{T}(\lambda) = B_0 + B_1(\lambda - \lambda_0) + B_2(\lambda - \lambda_0)^2.$$

#### Definition

The generalized eigenspace  $\mathcal{E}_{\lambda_0}$  is the closed linear space spanned by the vectors  $(u_j)_{i=0}^{\infty}$ ,  $u_j \in H_0^2(\Omega)$ , where

$$B_0 u_0 = 0, \qquad u_0 \neq 0,$$
  

$$B_1 u_0 + B_0 u_1 = 0,$$
  

$$B_2 u_{j-2} + B_1 u_{j-1} + B_0 u_j = 0, \quad j = 2, 3, \dots$$

## An easier definition

A vector w is a generalized eigenvector of a matrix M if

$$(M-\lambda_0)^k w = 0$$

for some eigenvalue  $\lambda_0$  and  $k \in \mathbb{N}$ .

#### Remark Let $T(\lambda) = A_0 + A_1\lambda + A_2\lambda^2$ . Then $u_j$ , j = 0, 1, ... are generalized eigenfunctions iff there is $v_j$ such that

$$(\mathcal{A} - \lambda_0)^{j+1} egin{pmatrix} u_j \ v_j \end{pmatrix} := 0, \quad \textit{where } \mathcal{A} = egin{pmatrix} 0 & \mathcal{A}_2^{-1} \ -\mathcal{A}_0 & -\mathcal{A}_1\mathcal{A}_2^{-1} \end{pmatrix}.$$

for j = 0, 1, ...

## Completeness result

#### Theorem (B.–Päivärinta, 2013)

Assume that  $V \in C^{\infty}(\overline{\Omega})$  and V > 0 on  $\overline{\Omega}$ . Then the space  $\bigoplus_{\lambda \in \mathbb{C}} \mathcal{E}_{\lambda}$  is complete in  $L^{2}(\Omega)$ .

Tools:

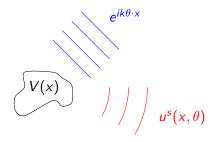
- generalized Shapiro-Lopatinsky conditions by Agranovich and Vishik (1964) to invert T(λ)
- Nevanlinna theory to estimate  $||T(\lambda)^{-1}||$
- the analytic Fredholm theorem

Names:

► Keldysh, Agranovich, Robert and Lai, Robbiano

## Non-scattering energies

with Valter Pohjola (Uppsala University), Lassi Päivärinta (Tallinn University of Technology), John Sylvester (University of Washington), Esa Vesalainen (Aalto University) Single frequency plane-wave scattering



The total wave u satisfies

$$(\Delta + k^2(1+V))u = 0,$$

where V models a perturbation to the background wave speed and

$$u = e^{ik\theta \cdot x} + u^{s}(x,\theta)$$
incident wave scattered wave

## More general and realistic incident waves

$$u_g(x) = u_g^i(x) + rac{e^{ik|x|}}{|x|} A_g\left(rac{x}{|x|}\right) + O\left(rac{1}{|x|^2}\right),$$

where

$$u_g^i(x) = \int_{\mathbb{S}^2} e^{ikx\cdot\theta} g(\theta) d\sigma(\theta)$$

is a superposition of plane-waves and  $A_g$  is the scattering amplitude of the scattered wave.

## Vanishing Scattering Amplitude?

Question: Can there be  $g \in L^2(\mathbb{S}^{n-1})$ ,  $g \neq 0$  such that  $A_g \equiv 0$ ? Consequence:

 $\text{Rellich's theorem} \quad \Longrightarrow \quad u_g^s \equiv 0 \quad \mathbb{R}^n \setminus \operatorname{supp} V.$ 

Recall that

$$u_g = u_g^i + u_g^s$$
  
 $u_g = u_g^i + u_g^s$  compact support

Now v and w satisfy

$$\begin{aligned} (\Delta + k^2 (1 + V))w &= 0 \quad \text{in } \Omega & w &= v & \text{on } \partial\Omega \\ (\Delta + k^2)v &= 0 \quad \text{in } \Omega & \frac{\partial}{\partial\nu}w &= \frac{\partial}{\partial\nu}v & \text{on } \partial\Omega \end{aligned}$$

This is the interior transmission problem.

## Non Scattering Energies

#### Definition

 $\lambda > 0$  is a non-scattering energy (NSE) if the scattering amplitude is not injective, i.e. there is an incident wave

$$u_g^i(x) = \int_{\mathbb{S}^{n-1}} e^{ik\theta\cdot x} g(\theta) d\sigma(\theta), \quad k = \sqrt{\lambda},$$

such that the scattered wave  $u_s$  has zero far field, so  $A_g \equiv 0$ .

#### Remark

Non-scattering energies are transmission eigenvalues.

#### Theorem

{Transmission eigenvalues}  $\neq$  {non-scattering energies} (B.-Päivärinta-Sylvester 2014, Päivärinta-Salo-Vesalainen submitted 2014)

## Theorem and Consequences

#### Theorem (B.–Päivärinta–Sylvester, 2014)

Let  $V = \chi_C \varphi$ ,  $C = ]0, \infty[^n$  and  $\varphi$  with bounded support and  $\varphi(\overline{0}) \neq 0$ . Then V scatters all incident waves at all energies.

#### Remark

Two penetrable scatterers whose difference is non-scattering at energy  $\lambda$  can be distinguished from a single scattering measurement!

### Theorem (Hu-Salo-Vesalainen, 2016)

The shape of polygonal penetrable scatterers can be deduced from any single measurement in 2D. The same is true for rectangular scatterers in 3D.

## Results used in the proof

#### Proposition

If v is a non-scattering incident wave, then

$$\int V v w dx = 0$$

for all 
$$w \in L^1_{loc}$$
,  $(\Delta + k^2(1+V))w = 0$ .

#### Proposition

Let H be a harmonic polynomial. If  $\int_{x \ge 0} e^{\rho \cdot x} H(x) dx = 0$  for all  $\rho \in \mathbb{C}^n$ ,  $\rho \cdot \rho = 0$ ,  $\Re \rho < 0$ , then  $H \equiv 0$ .

#### Proposition

There is  $w \in L^p_{loc}$ ,  $2 \leq p < \infty$ ,  $(\Delta + k^2(1+V))w = 0$ , such that

$$w(x) = e^{\rho \cdot x} (1 + \psi(x)), \qquad \|\psi\|_{L^p(\Omega)} \le C_{\Omega} |\Im\rho|^{-1}$$

## Related things

Theorem (B.–Pohjola–Vesalainen, almost submitted) In the hyperbolic space  $\mathbb{H}^n$  hyperbolic rectangular ( $n \in \mathbb{N}$ ) or spherical ( $n \in \{2,3\}$ ) penetrable cones always scatter.

#### Conjecture

Let M be a symmetric positive definite matrix. Let H be a polynomial and  $P(D)H = \nabla \cdot (M\nabla H) = 0$ . If

$$\int_{x\geq 0}e^{\rho\cdot x}H(x)dx=0$$

for all  $\rho \in \mathbb{C}^n$ ,  $P(\rho) = 0$ ,  $\Re \rho < 0$ , then  $H \equiv 0$ .

#### Corollary

Polygonal scatterers always scatter also in 3D and higher.

## New estimates for general PDE's

with

John Sylvester (University of Washington)

work in progress

## New estimates for direct scattering theory

Old well-known estimates

Let 
$$(\Delta + k^2)u = f$$
. then

• Agmon (1975), 
$$\delta > \frac{1}{2}$$

$$\left\| (1+|x|^2)^{-\delta/2} u \right\|_{L^2(\mathbb{R}^n)} \leq rac{C}{k} \left\| (1+|x|^2)^{\delta/2} f \right\|_{L^2(\mathbb{R}^n)}$$

► Agmon-Hörmander (1976)  $A_j = \{2^{j-1} < |x| < 2^{j+1}\}, A_0 = \{|x| < 2\}.$ 

$$\sup_{j\geq 0} \sqrt{2^{j}}^{-1} \|u\|_{L^{2}(A_{j})} \leq \frac{C}{k} \sum_{j=0}^{\infty} \sqrt{2^{j}} \|f\|_{L^{2}(A_{j})}$$

► Kenig-Ruiz-Sogge (1987) 
$$\frac{1}{q_1} + \frac{1}{q_2} = 1$$
,  $\frac{2}{n+1} \le \frac{1}{q_1} - \frac{1}{q_2} \le \frac{2}{n}$ 
$$\|u\|_{L^{q_2}(\mathbb{R}^n)} \le Ck^{n(\frac{1}{q_1} - \frac{1}{q_2}) - 2} \|f\|_{L^{q_1}(\mathbb{R}^n)}$$

All of the above not satisfactory from a physical point of view: dilation, rotation, translation, behaviour w.r.t wavelength...

New estimates for direct scattering theory

Theorem (Sylvester 2013 or earlier) If supp  $f \subset \Omega_s$  then  $(\Delta + k^2)u = f$  has a scattering solution u. It satisfies

$$\|u\|_{L^{2}(\Omega_{r})} \leq C \frac{\sqrt{\operatorname{diam}(\Omega_{r})} \sqrt{\operatorname{diam}(\Omega_{s})}}{k} \|f\|_{L^{2}(\Omega_{s})}$$

for any bounded  $\Omega_r$ .

Corollary

Agmon-Hörmander estimates follow.

Goal: Same estimate for P(D)u = f, P constant coefficient,  $P^{-1}(0)$  non-singular. Difficulty: Generality of P. Meta-inverse problem!

## New CGO-estimate

Fundamental estimate, Sylvester–Uhlmann 1987, if  $\rho \cdot \rho = 0$  then

$$\|(\Delta - 2
ho \cdot 
abla)^{-1}f\|_{L^2(\Omega)} \leq rac{\mathcal{C}}{|
ho|} \|f\|_{L^2(\Omega)}$$

Theorem (B.–Sylvester, to be published) If  $\frac{1}{p_2} - \frac{1}{p_1} < \frac{1}{n-1}$  and  $p_2 \le p_1$ 

$$\begin{aligned} \|(\Delta - 2\rho \cdot \nabla)^{-1} f\|_{L^{\infty}(\Re\rho,\widehat{L^{p_{2}}}(\Re\rho^{\perp}))} \\ &\leq C \left|\rho\right|^{(n-1)\left(\frac{1}{p_{2}} - \frac{1}{p_{1}}\right) - 1} \left\|f\right\|_{L^{1}(\Re\rho,\widehat{L^{p_{1}}}(\Re\rho^{\perp}))} \end{aligned}$$

If supp  $f\subset \Omega_{s},\ \frac{1}{q_{1}}-\frac{1}{q_{2}}<\frac{1}{n-1}$  and  $q_{1}\leq 2\leq q_{2}$  then

$$\begin{split} \| (\Delta - 2\rho \cdot \nabla)^{-1} f \|_{L^{q_2}(\Omega_w)} \\ & \leq C d(\Omega_w)^{1/q_2} d(\Omega_s)^{1/q_1} \left| \rho \right|^{(n-1)(\frac{1}{q_1} - \frac{1}{q_2}) - 1} \| f \|_{L^{q_1}(\Omega_s)} \, . \end{split}$$

# New estimates for direct scattering theory Idea of the proof in 1D

$$(\partial_x^2 + k^2)u = f \implies (-\xi^2 + k^2)\hat{u} = \hat{f}$$
$$\hat{u} = -\frac{\hat{f}}{\xi^2 - k^2} = -\frac{\hat{f}}{2k} \left(\frac{1}{\xi - k} - \frac{1}{\xi + k}\right)$$
$$\hat{u} \text{ "scattered"} := -\frac{\hat{f}}{2k} \left(\frac{1}{\xi - (k - i0)} - \frac{1}{\xi + (k - i0)}\right)$$
$$\mathscr{F}\{\sqrt{2\pi}i H(x) e^{izx}\}(\xi) = \frac{1}{\xi - z}, \text{ if } \text{Im } z > 0.$$

Result

$$u$$
 "scattered" =  $f * \frac{ie^{-ik|x|}}{2k}$ ,  $||u||_{L^{\infty}} \le \frac{1}{2k} ||f||_{L^{1}}$ 

# New estimates for direct scattering theory Idea of the proof in 2D 1/3

$$(\partial_x^2 + \partial_y^2 + k^2)u = f \Longrightarrow (-\xi_1^2 - \xi_2^2 + k^2)\hat{u} = \hat{f}$$
$$\hat{u} = \frac{\hat{f}}{-\xi_1^2 - \xi_2^2 + k^2} = \frac{-\hat{f}}{\left(\xi_1 - \sqrt{k^2 - \xi_2^2}\right)\left(\xi_1 + \sqrt{k^2 - \xi_2^2}\right)}$$
$$\hat{u} \text{ "scattered"} := \frac{-\hat{f}}{2\sqrt{k^2 - \xi_2^2}} \left(\frac{1}{\xi_1 - \sqrt{k^2 - \xi_2^2}} - \frac{1}{\xi_1 + \sqrt{k^2 - \xi_2^2}}\right)$$

where  $\sqrt{\ldots}$  chosen as a certain branch in  $\mathbb{C}!$ 

### New estimates for direct scattering theory Idea of the proof in 2D 2/3

Result If  $\hat{f} \equiv 0$  on  $|k^2 - \xi_2^2| < \delta^2$  then

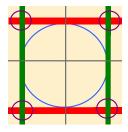
$$u = f *_{x_1} \mathscr{F}_2^{-1} \frac{i e^{-i \sqrt{k^2 - \xi_2^2} |x_1|}}{2 \sqrt{k^2 - \xi_2^2}},$$

$$\sup_{x_1} \|u\|_{L^2(x_2)} \leq \frac{1}{2\delta} \int_{-\infty}^{\infty} \|f\|_{L^2(x_2)} \, dx_1.$$

Lemma Cut-off's do not cause problems.

# New estimates for direct scattering theory Idea of the proof in 2D 3/3

Lemma A suitable partition of unity exists.



Picture courtesy of J. Sylvester

Corollary If supp  $f \subset \Omega_s$ , and  $d(\Omega_s) < \infty$  then

$$\|u\|_{L^2(\Omega_w)} \leq \frac{C}{\delta} \sqrt{d(\Omega_w)d(\Omega_s)} \|f\|_{L^2(\Omega_s)}$$

for any bounded  $\Omega_w$ . For which PDEs will this work?

## Inverse backscattering

## by Rakesh (University of Delaware), Gunther Uhlmann (University of Washington & HKUST)

#### Inverse backscattering

Point source backscattering by Rakesh–Uhlmann

Wave generated at  $a \in \mathbb{R}^3$ , t = 0 for potential  $q_j \in C_0^{\infty}(B(0,1))$ :

$$egin{aligned} &rac{\partial^2}{\partial t^2}U_j^a(x,t)=\left(\Delta_x+q_j(x)
ight)U_j^a(x,t)+\delta(x-a,t),\ &U_j^a(x,t)=0, \qquad t<0 \end{aligned}$$

#### Theorem (Rakesh–Uhlmann 2015)

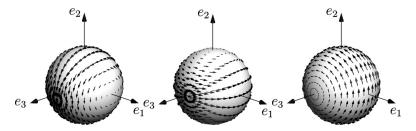
Assume  $U_1^a(a, t) = U_2^a(a, t)$  for all  $a \in S(0, 1)$  and 0 < t < 2. Then  $q_1 = q_2$  under the a-priori assumption of angularly controlled  $q_1 - q_2$ 

$$\|\Omega_{ij}(q_1-q_2)\|_{L^2(S(0,
ho))} \le C \|q_1-q_2\|_{L^2(S(0,
ho))}$$

for all  $0 < \rho < 1$  and angular derivatives  $\Omega_{ij}$ .

### Angular derivatives $\Omega_{ij}$ ?

Three vector fields that span the tangent space TS(0, 1):



Why three? -Hairy ball theorem.

### Proof idea 1/3

Formula for boundary measurements

$$U_1^{a}(a, 2\tau) - U_2^{a}(a, 2\tau) = \frac{M(q_1 - q_2)(a, \tau)}{8\pi} + \int_{|x-a| \le \tau} (q_1 - q_2)(x)k(x, \tau, a)dx$$

where

$$Mf(a,\tau) = \frac{1}{4\pi\tau^2} \int_{S(x,\tau)} f(y) dS_y$$

and k,  $\partial_{\tau}k$  smooth.

#### Remark

This is the only part where knowledge of PDE's are required!

### Proof idea 2/3

► Formula relating *f* to *Mf* 

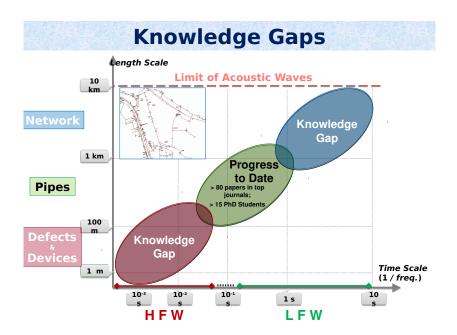
$$f((1-\tau)a) = \frac{2\partial_{\tau}(\tau M f(a,\tau))}{1-\tau} + \frac{1}{2\pi(1-\tau)} \int_{S(a,\tau)} \frac{\alpha \cdot \nabla f(y)}{\sin \phi} dS_y$$
$$\left|\int_{O} \int_{O} \int$$

### Proof idea 3/3

Gronwall's inequality

$$f'(s) \leq C \int_{s}^{1} f(r) dr \implies f \equiv 0$$

## Inverse problem of water pipe systems with Mohamed Ghidaoui (HKUST)



### Leaks? Blockages?

Simplest model: Question of 1D wave/transport equation

Pipe without leaks

$$\frac{A(x)}{c^2}\frac{\partial^2 H}{\partial t^2} - \frac{\partial}{\partial x}\left(A(x)\frac{\partial H}{\partial x}\right) = 0$$

Solution known since 70's

• Pipe with leak at  $x = x_L$  of flow  $Q_L$ 

$$\begin{cases} \frac{A(x)g}{c^2}\frac{\partial H}{\partial t} + \frac{\partial(A(x)V)}{\partial x} = Q_L\delta(x - x_L)\\ \frac{\partial V}{\partial t} + g\frac{\partial H}{\partial x} = -\frac{V}{A(x)}Q_L\delta(x - x_L) \end{cases}$$

 $Q_L$  depends on  $H(x_L)!!$ 

Network?

# LATEX-quality mathematics on the web



**Theorem 7** (Causal Paley-Wiener theorem for  $\mathscr{S}'(]$ Now supp  $u \subset [0, \infty[$  if and only if there is a unique hole constants  $M, N \in \mathbb{N}$  such that

$$|\langle U(z),\psi
angle|\leq C\|\psi\|_{M,N}\max(1,|\Im z|^{-M})(1+|z|)^N$$

for all  $\psi \in \mathscr{S}(\mathbb{R}^n)$  and

$$\lim_{\sigma \to 0-} U(\cdot + i\sigma) = \mathscr{F}_t u,$$

```
<div class="theorem" id="nDPWthm"</pre>
title="Causal Paley-Wiener theorem for $\S'(\R\times\R^n)$"
data-counters="1">
 Let $u \in \S'(\R\times\R^n)$. Now $\supp u \subset {[{0,\infty}]}$ if
 constants $M,N\in\N$ such that
   \label{Uestimate} \abs{\langle U(z), \psi\rangle} \leq C
   \norm{\psi} {M,N} \max(1, \abs{\Im z}^{-M}) (1 + \abs{z})^N
 for all $\psi\in\S(\R^n)$ and
   \label{Uurelation} \lim {\sigma\toO-} U(\cdot+i\sigma) = \F_t u,
```

## Thank you for your attention!