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Water supply network
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How to locate problems traditionally?

Sahara System

Sonar

Replace & Rehabilitate

Gas Injection

Smart Ball
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Direct model: single pipe

∂tH + a2

gA∂Q = 0, 0 < x < L, t ∈ R,

∂tQ + gA∂H = 0, 0 < x < L, t ∈ R,

H = Q = 0, 0 < x < L, t ≤ 0.

Water hammer equations.
https://www.youtube.com/watch?v=jTrhHUwDNYE
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One pipe inverse problem
Measurement Λ(t) defined by assuming that H, Q satisfy

∂tH + a2

gA∂Q = 0, 0 < x < L, t ∈ R,

∂tQ + gA∂H = 0, 0 < x < L, t ∈ R,

H = Q = 0, 0 < x < L, t ≤ 0

Boundary conditions:

whatever static at x = L
unit impulse discharge Q(0, t) = δ0(t) at x = 0

We measure the pressure Λ(t) = H(0, t). It gives the
impulse-response function.

Recover: A(x), or alternatively a(x), or A(x)/a(x).
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Virtual causal solutions

Hv , Qv are virtual causal solutions if
1. they satisfy the PDE on 0 < x < L, t ∈ R,
2. they vanish for t ≤ 0,
3. they satisfy the boundary condition at x = L.

Nothing is required at x = 0!

This is in contrast with the physical solution that gives rise to the
measurement Λ.
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Integration by parts
For simplicity assume a(x) = a0 constant! Let Hv , Qv be virtual
causal solutions. Then

−∂Qv = gA
a2

0
∂tHv

and integrate
∫ τ

0
∫ a0τ

0 . . . dxdt given any fixed τ > 0:

−
∫ τ

0

∫ a0τ

0
∂Qv (x , t)dxdt =

∫ τ

0

∫ a0τ

0

gA(x)
a2

0
∂tHv (x , t)dxdt

▶ Hv = Qv = 0 at t = 0
▶ hence Hv (x , t) = Qv (x , t) = 0 when x ⩾ a0t, so

∫ τ

0
Qv (0, t)dt =

∫ a0τ

0

gA(x)
a2

0
Hv (x , τ)dx (1)
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Special solutions

Given any causal solutions, for example the virtual ones Hv , Qv ,
let’s look at the total volume input into the system:

V (τ) :=
∫ τ

0
Qv (0, t)dt =

∫ a0τ

0

gA(x)
a2

0
Hv (x , τ)dx .

If, by magic, Hv was such that

Hv (x , τ) =
{

1, x < a0τ

0, x ⩾ a0τ
at t = τ,

then
A(x) = a0

g
∂V
∂τ

( x
a0

)
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After the facts, new problem statement

Unknown: A(x). Known: g , a0 and physical measurements:

Q(0, t) = δ0(t), H(0, t) = Λ(t).

Given any τ , calculate the boundary values of virtual causal
solutions Hv , Qv for which

Hv (x , τ) =
{

1, x < a0τ

0, x ⩾ a0τ
.

Then Qv (0, t) for 0 < t < T recovers A(x) for 0 < x < T/a0.
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Unique continuation

If H , Q satisfy the PDEs on 0 < x < L, 0 < t < 2τ and
H (0, t) = 2, Q(0, t) = 0, 0 < t < 2τ,

then H (x , t) = 2, Q(x , t) = 0 in x < a0(τ − |τ − t|).
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Unique continuation to causal solutions
If Hv , Qv are virtual causal solutions and H , Q defined by
H (x , t) = Hv (x , t)+Hv (x , 2τ−t), Q(x , t) = Qv (x , t)−Qv (x , 2τ−t)
satisfy H (0, t) = 2, Q(0, t) = 0 on 0 < t < 2τ , then

Hv (x , τ) = 1
2H (x , τ) =

{
1, x < a0τ

0, x ⩾ a0τ
.
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Next?

How to find the suitable Hv , Qv?
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Integral equation from requirements of H , Q
Measurement:

Q(0, t) = δ0(t), H(0, t) = Λ(t) = a0
gA(0)(δ0(t) + h(t))

So Q(0, t) = Qv (0, t) =⇒ H(0, t) = Λ ∗ Qv (0, t).
Let Hv , Qv be causal solutions such that H (0, t) = 2, Q(0, t) = 0
on 0 < t < 2τ . These imply, in terms of Qv :

Qv (0, t)+1
2

∫ 2τ

0
Qv (0, s)h(|s−t|)ds = gA(0)

a0
, 0 < t < 2τ.

Conversely, if Qv solves the above and Hv is the corresponding
pressure head, then

Hv (x , τ) =
{

1, x < a0τ

0, x ⩾ a0τ
at t = τ.

Then A(a0τ) = a0g−1∂τ
∫ τ

0 Qv (0, t)dt.
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Algorithm
1. Input Q(0, t) = δ0(t) and for t < 2T = 2L/a0 measure

H(0, t) = a0
gA(0)(δ0(t) + h(t))

2. For whichever 0 < τ < T , solve for the boundary value of a
virtual causal solution Qv from

Qv (0, t) + 1
2

∫ 2τ

0
Qv (0, s)h(|s − t|)ds = gA(0)

a0
, 0 < t < 2τ

3. Set

V (τ) =
∫ τ

0
Qv (0, t)dt

(
=
∫ a0τ

0

gA(x)
a2

0
dx
)

4. Repeat 2–3 (on the computer) for many τ to get a good
approximation of V

5. Given x < L the area can be found by

A(x) = a0
g

(
∂

∂τ
V (τ)

)
τ=x/a0
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Laboratory experiment: setup

Measurement set up by Silvia Meniconi and Bruno Brunone’s
group1.

1Università degli Studi di Perugia, Italy
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Laboratory experiment: impulse-response function
Measurement set up by Silvia Meniconi and Bruno Brunone’s
group2.

2Università degli Studi di Perugia, Italy
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Reconstruction from measured and processed data

Measurement set up by Silvia Meniconi and Bruno Brunone’s
group3.

3Università degli Studi di Perugia, Italy
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Network
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Junction conditions

▶ H is a scalar: the boundary values Hj are the same at
connected pipe ends

▶ No sinks or sources (total water flowing into pipes sum to
zero): ∑

j
νjQj = 0
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Main difficulty compared to a segment?

The sets where we can have Hv(x , τ) = 1.
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In which Ω can we force Hv(x , τ) = 1?

Control theory suggests that there are boundary values such that a
virtual causal solution Hv can be constructed such that

Hv (x , τ) =
{

1, x ∈ Ω
0, x /∈ Ω

given any measurable set Ω ⊂ G when G is a tree and τ large.

HOWEVER
Can we solve for these boundary values? Is it computationally
efficient? Is it even possible?
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Admissible domains
This works: cut off a branch!

Needs a matrix of measurements!
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Inductive unique continuation

+ junction conditions
= propagate H = 2, Q = 0!!

The same logic as before works, but all the equations become more
complicated.
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Numerical experiment: setup

300m
400m

400m
500m

A
B

CD

E
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Numerical experiment: impulse-response matrix
hij(t) = A(xj)g/a0 · kij(t)
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Reconstruction from measured data using regularization

0 50 100 150 200 250 300
0

0.5
1

1.5
2

Pipe AE

A
(x

) 
(m

2
)

x (m)

Reference A(x)

Estimated A(x)

0 100 200 300 400
0

0.5
1

1.5
2

Pipe BE

A
(x

) 
(m

2
)

x (m)

0 100 200 300 400
0

0.5
1

1.5
2

Pipe CE

A
(x

) 
(m

2
)

x (m)

0 100 200 300 400 500
0

0.5
1

1.5
2

Pipe ED

A
(x

) 
(m

2
)

x (m)

26 / 27



Danke schön!
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