Imaging water supply pipes using pressure waves

Emilia L.K. Blåsten

Collaborators: Fedi Zouari, Moez Louati, Mohamed S. Ghidaoui, Silvia Meniconi and Bruno Brunone

LUT University, Finland

11 th Applied Inverse Problems Conference
University of Göttingen, Germany
September 4, 2024

Water supply network

How to locate problems traditionally?

Sahara System
Replace \& Rehabilitate

Sonar

Smart Ball

Direct model: single pipe

Direct model: single pipe

$$
\begin{array}{rll}
\partial_{t} H+\frac{a^{2}}{g A} \partial Q=0, & 0<x<L, & t \in \mathbb{R}, \\
\partial_{t} Q+g A \partial H=0, & 0<x<L, & t \in \mathbb{R}, \\
H=Q=0, & 0<x<L, & t \leq 0 .
\end{array}
$$

Water hammer equations.
https://www.youtube.com/watch?v=jTrhHUwDNYE

One pipe inverse problem

Measurement $\Lambda(t)$ defined by assuming that H, Q satisfy

$$
\begin{array}{rll}
\partial_{t} H+\frac{a^{2}}{g A} \partial Q=0, & 0<x<L, & t \in \mathbb{R} \\
\partial_{t} Q+g A \partial H=0, & 0<x<L, & t \in \mathbb{R} \\
H=Q=0, & 0<x<L, & t \leq 0
\end{array}
$$

Boundary conditions:

$$
\begin{aligned}
& \text { whatever static at } x=L \\
& \text { unit impulse discharge } Q(0, t)=\delta_{0}(t) \text { at } x=0
\end{aligned}
$$

We measure the pressure $\Lambda(t)=H(0, t)$. It gives the impulse-response function.

Recover: $A(x)$, or alternatively $a(x)$, or $A(x) / a(x)$.

Virtual causal solutions

H_{v}, Q_{v} are virtual causal solutions if

1. they satisfy the PDE on $0<x<L, t \in \mathbb{R}$,
2. they vanish for $t \leq 0$,
3. they satisfy the boundary condition at $x=L$.

Nothing is required at $x=0$!

Virtual causal solutions

H_{v}, Q_{v} are virtual causal solutions if

1. they satisfy the PDE on $0<x<L, t \in \mathbb{R}$,
2. they vanish for $t \leq 0$,
3. they satisfy the boundary condition at $x=L$.

Nothing is required at $x=0$!
This is in contrast with the physical solution that gives rise to the measurement Λ.

Integration by parts

For simplicity assume $a(x)=a_{0}$ constant! Let H_{v}, Q_{v} be virtual causal solutions. Then

$$
-\partial Q_{v}=\frac{g A}{a_{0}^{2}} \partial_{t} H_{v}
$$

and integrate $\int_{0}^{\tau} \int_{0}^{a_{0} \tau} \ldots d x d t$ given any fixed $\tau>0$:

$$
-\int_{0}^{\tau} \int_{0}^{a_{0} \tau} \partial Q_{v}(x, t) d x d t=\int_{0}^{\tau} \int_{0}^{a_{0} \tau} \frac{g A(x)}{a_{0}^{2}} \partial_{t} H_{v}(x, t) d x d t
$$

- $H_{v}=Q_{v}=0$ at $t=0$
- hence $H_{v}(x, t)=Q_{v}(x, t)=0$ when $x \geqslant a_{0} t$, so

$$
\begin{equation*}
\int_{0}^{\tau} Q_{v}(0, t) d t=\int_{0}^{a_{0} \tau} \frac{g A(x)}{a_{0}^{2}} H_{v}(x, \tau) d x \tag{1}
\end{equation*}
$$

Special solutions

Given any causal solutions, for example the virtual ones H_{v}, Q_{v}, let's look at the total volume input into the system:

$$
V(\tau):=\int_{0}^{\tau} Q_{v}(0, t) d t=\int_{0}^{a_{0} \tau} \frac{g A(x)}{a_{0}^{2}} H_{v}(x, \tau) d x
$$

Special solutions

Given any causal solutions, for example the virtual ones H_{v}, Q_{v}, let's look at the total volume input into the system:

$$
V(\tau):=\int_{0}^{\tau} Q_{v}(0, t) d t=\int_{0}^{a_{0} \tau} \frac{g A(x)}{a_{0}^{2}} H_{v}(x, \tau) d x
$$

If, by magic, H_{v} was such that

$$
H_{v}(x, \tau)=\left\{\begin{array}{ll}
1, & x<a_{0} \tau \\
0, & x \geqslant a_{0} \tau
\end{array} \quad \text { at } t=\tau\right.
$$

Special solutions

Given any causal solutions, for example the virtual ones H_{v}, Q_{v}, let's look at the total volume input into the system:

$$
V(\tau):=\int_{0}^{\tau} Q_{v}(0, t) d t=\int_{0}^{a_{0} \tau} \frac{g A(x)}{a_{0}^{2}} H_{v}(x, \tau) d x
$$

If, by magic, H_{v} was such that

$$
H_{v}(x, \tau)=\left\{\begin{array}{ll}
1, & x<a_{0} \tau \\
0, & x \geqslant a_{0} \tau
\end{array} \quad \text { at } t=\tau\right.
$$

then

$$
A(x)=\frac{a_{0}}{g} \frac{\partial V}{\partial \tau}\left(\frac{x}{a_{0}}\right)
$$

After the facts, new problem statement

Unknown: $A(x)$. Known: g, a_{0} and physical measurements:

$$
Q(0, t)=\delta_{0}(t), \quad H(0, t)=\Lambda(t) .
$$

Given any τ, calculate the boundary values of virtual causal solutions H_{v}, Q_{v} for which

$$
H_{v}(x, \tau)= \begin{cases}1, & x<a_{0} \tau \\ 0, & x \geqslant a_{0} \tau\end{cases}
$$

Then $Q_{v}(0, t)$ for $0<t<T$ recovers $A(x)$ for $0<x<T / a_{0}$.

Unique continuation
If \mathscr{H}, \mathscr{Q} satisfy the PDEs on $0<x<L, 0<t<2 \tau$ and

$$
\mathscr{H}(0, t)=2, \quad \mathscr{Q}(0, t)=0, \quad 0<t<2 \tau
$$

then $\mathscr{H}(x, t)=2, \mathscr{Q}(x, t)=0$ in $x<a_{0}(\tau-|\tau-t|)$.

Unique continuation to causal solutions
If H_{v}, Q_{v} are virtual causal solutions and \mathscr{H}, \mathscr{Q} defined by

$$
\mathscr{H}(x, t)=H_{v}(x, t)+H_{v}(x, 2 \tau-t), \quad \mathscr{Q}(x, t)=Q_{v}(x, t)-Q_{v}(x, 2 \tau-t)
$$

satisfy $\mathscr{H}(0, t)=2, \mathscr{Q}(0, t)=0$ on $0<t<2 \tau$, then

$$
H_{v}(x, \tau)=\frac{1}{2} \mathscr{H}(x, \tau)=\left\{\begin{array}{ll}
1, & x<a_{0} \tau \\
0, & x \geqslant a_{0} \tau
\end{array} .\right.
$$

Next?

Next?

How to find the suitable H_{v}, Q_{v} ?

Integral equation from requirements of \mathscr{H}, \mathscr{Q}

Measurement:

$$
Q(0, t)=\delta_{0}(t), \quad H(0, t)=\Lambda(t)=\frac{a_{0}}{g A(0)}\left(\delta_{0}(t)+h(t)\right)
$$

So $Q(0, t)=Q_{v}(0, t) \Longrightarrow H(0, t)=\Lambda * Q_{v}(0, t)$.
Let H_{v}, Q_{v} be causal solutions such that $\mathscr{H}(0, t)=2, \mathscr{Q}(0, t)=0$ on $0<t<2 \tau$. These imply, in terms of Q_{v} :

$$
Q_{v}(0, t)+\frac{1}{2} \int_{0}^{2 \tau} Q_{v}(0, s) h(|s-t|) d s=\frac{g A(0)}{a_{0}}, \quad 0<t<2 \tau
$$

Integral equation from requirements of \mathscr{H}, \mathscr{Q}

Measurement:

$$
Q(0, t)=\delta_{0}(t), \quad H(0, t)=\Lambda(t)=\frac{a_{0}}{g A(0)}\left(\delta_{0}(t)+h(t)\right)
$$

So $Q(0, t)=Q_{v}(0, t) \Longrightarrow H(0, t)=\Lambda * Q_{v}(0, t)$.
Let H_{v}, Q_{v} be causal solutions such that $\mathscr{H}(0, t)=2, \mathscr{Q}(0, t)=0$ on $0<t<2 \tau$. These imply, in terms of Q_{v} :

$$
Q_{v}(0, t)+\frac{1}{2} \int_{0}^{2 \tau} Q_{v}(0, s) h(|s-t|) d s=\frac{g A(0)}{a_{0}}, \quad 0<t<2 \tau .
$$

Conversely, if Q_{v} solves the above and H_{v} is the corresponding pressure head, then

$$
H_{v}(x, \tau)=\left\{\begin{array}{ll}
1, & x<a_{0} \tau \\
0, & x \geqslant a_{0} \tau
\end{array} \text { at } t=\tau .\right.
$$

Then $A\left(a_{0} \tau\right)=a_{0} g^{-1} \partial_{\tau} \int_{0}^{\tau} Q_{\nu}(0, t) d t$.

Algorithm

1. Input $Q(0, t)=\delta_{0}(t)$ and for $t<2 T=2 L / a_{0}$ measure

$$
H(0, t)=\frac{a_{0}}{g A(0)}\left(\delta_{0}(t)+h(t)\right)
$$

2. For whichever $0<\tau<T$, solve for the boundary value of a virtual causal solution Q_{v} from

$$
Q_{v}(0, t)+\frac{1}{2} \int_{0}^{2 \tau} Q_{v}(0, s) h(|s-t|) d s=\frac{g A(0)}{a_{0}}, \quad 0<t<2 \tau
$$

3. Set

$$
V(\tau)=\int_{0}^{\tau} Q_{v}(0, t) d t \quad\left(=\int_{0}^{a_{0} \tau} \frac{g A(x)}{a_{0}^{2}} d x\right)
$$

4. Repeat 2-3 (on the computer) for many τ to get a good approximation of V
5. Given $x<L$ the area can be found by

$$
A(x)=\frac{a_{0}}{g}\left(\frac{\partial}{\partial \tau} V(\tau)\right)_{\tau=x / a_{0}}
$$

Laboratory experiment: setup

Measurement set up by Silvia Meniconi and Bruno Brunone's group ${ }^{1}$.

${ }^{1}$ Università degli Studi di Perugia, Italy

Laboratory experiment: impulse-response function

 Measurement set up by Silvia Meniconi and Bruno Brunone's group ${ }^{2}$.
(B) Severe blockage

[^0]
Reconstruction from measured and processed data

Measurement set up by Silvia Meniconi and Bruno Brunone's group ${ }^{3}$.
(A) Shallow blockage

(B) Severe blockage

[^1]Network

Junction conditions

- H is a scalar: the boundary values H_{j} are the same at connected pipe ends
- No sinks or sources (total water flowing into pipes sum to zero):

$$
\sum_{j} \nu_{j} Q_{j}=0
$$

Main difficulty compared to a segment?

The sets where we can have $H_{v}(x, \tau)=1$.

In which Ω can we force $H_{v}(x, \tau)=1$?

Control theory suggests that there are boundary values such that a virtual causal solution H_{v} can be constructed such that

$$
H_{v}(x, \tau)= \begin{cases}1, & x \in \Omega \\ 0, & x \notin \Omega\end{cases}
$$

given any measurable set $\Omega \subset \mathbb{G}$ when \mathbb{G} is a tree and τ large.

In which Ω can we force $H_{v}(x, \tau)=1$?

Control theory suggests that there are boundary values such that a virtual causal solution H_{v} can be constructed such that

$$
H_{v}(x, \tau)= \begin{cases}1, & x \in \Omega \\ 0, & x \notin \Omega\end{cases}
$$

given any measurable set $\Omega \subset \mathbb{G}$ when \mathbb{G} is a tree and τ large.

HOWEVER

Can we solve for these boundary values? Is it computationally efficient? Is it even possible?

Admissible domains

This works: cut off a branch!

Needs a matrix of measurements!

Inductive unique continuation

The same logic as before works, but all the equations become more complicated.

Numerical experiment: setup

Numerical experiment: impulse-response matrix
$h_{i j}(t)=A\left(x_{j}\right) g / a_{0} \cdot k_{i j}(t)$

~

Reconstruction from measured data using regularization

Pipe BE

Danke schön!

[^0]: ${ }^{2}$ Università degli Studi di Perugia, Italy

[^1]: ${ }^{3}$ Università degli Studi di Perugia, Italy

