Imaging water supply pipes using pressure waves

Emilia L.K. Blåsten

Collaborators: Fedi Zouari, Moez Louati, Mohamed S. Ghidaoui, Silvia Meniconi and Bruno Brunone

LUT University, Finland

11th Applied Inverse Problems Conference University of Göttingen, Germany September 4, 2024

Water supply network

How to locate problems traditionally?

Replace & Rehabilitate

Sahara System

Smart Ball

Sonar

Gas Injection

Direct model: single pipe

Direct model: single pipe

$$\begin{aligned} \partial_t H &+ \frac{a^2}{gA} \partial Q = 0, & 0 < x < L, \quad t \in \mathbb{R}, \\ \partial_t Q &+ gA \partial H = 0, & 0 < x < L, \quad t \in \mathbb{R}, \\ H &= Q = 0, & 0 < x < L, \quad t \leq 0. \end{aligned}$$

Water hammer equations. https://www.youtube.com/watch?v=jTrhHUwDNYE

One pipe inverse problem

Measurement $\Lambda(t)$ defined by assuming that H, Q satisfy

$$\begin{aligned} \partial_t H &+ \frac{a^2}{gA} \partial Q = 0, \qquad 0 < x < L, \quad t \in \mathbb{R}, \\ \partial_t Q &+ gA \partial H = 0, \qquad 0 < x < L, \quad t \in \mathbb{R}, \\ H &= Q = 0, \qquad 0 < x < L, \quad t \le 0 \end{aligned}$$

Boundary conditions:

whatever static at x = Lunit impulse discharge $Q(0, t) = \delta_0(t)$ at x = 0

We measure the pressure $\Lambda(t) = H(0, t)$. It gives the impulse-response function.

Recover: A(x), or alternatively a(x), or A(x)/a(x).

Virtual causal solutions

 H_{ν}, Q_{ν} are virtual causal solutions if

- 1. they satisfy the PDE on 0 < x < L, $t \in \mathbb{R}$,
- 2. they vanish for $t \leq 0$,
- 3. they satisfy the boundary condition at x = L.

Nothing is required at x = 0!

Virtual causal solutions

 H_{ν}, Q_{ν} are virtual causal solutions if

- 1. they satisfy the PDE on 0 < x < L, $t \in \mathbb{R}$,
- 2. they vanish for $t \leq 0$,
- 3. they satisfy the boundary condition at x = L.

Nothing is required at x = 0!

This is in contrast with the physical solution that gives rise to the measurement $\boldsymbol{\Lambda}.$

Integration by parts

For simplicity assume $a(x) = a_0$ constant! Let H_v , Q_v be virtual causal solutions. Then

$$-\partial Q_{v} = \frac{gA}{a_{0}^{2}}\partial_{t}H_{v}$$

and integrate $\int_0^{\tau} \int_0^{a_0 \tau} \dots dx dt$ given any fixed $\tau > 0$:

$$-\int_0^\tau \int_0^{a_0\tau} \partial Q_v(x,t) dx dt = \int_0^\tau \int_0^{a_0\tau} \frac{gA(x)}{a_0^2} \partial_t H_v(x,t) dx dt$$

•
$$H_v = Q_v = 0$$
 at $t = 0$
• hence $H_v(x, t) = Q_v(x, t) = 0$ when $x \ge a_0 t$, so

$$\int_0^\tau Q_\nu(0,t) dt = \int_0^{a_0\tau} \frac{gA(x)}{a_0^2} H_\nu(x,\tau) dx$$
(1)

Special solutions

Given any causal solutions, for example the virtual ones H_v , Q_v , let's look at the total volume input into the system:

$$V(\tau) := \int_0^\tau Q_v(0,t) dt = \int_0^{a_0\tau} \frac{gA(x)}{a_0^2} H_v(x,\tau) dx.$$

Special solutions

Given any causal solutions, for example the virtual ones H_v , Q_v , let's look at the total volume input into the system:

$$V(\tau) := \int_0^\tau Q_v(0,t) dt = \int_0^{a_0\tau} \frac{gA(x)}{a_0^2} H_v(x,\tau) dx.$$

If, by magic, H_v was such that

$$H_{
m v}(x, au) = egin{cases} 1, & x < {\sf a}_0 au \ 0, & x \geqslant {\sf a}_0 au \end{cases}$$
 at $t= au,$

Special solutions

Given any causal solutions, for example the virtual ones H_v , Q_v , let's look at the total volume input into the system:

$$V(\tau) := \int_0^\tau Q_v(0,t) dt = \int_0^{a_0\tau} \frac{gA(x)}{a_0^2} H_v(x,\tau) dx.$$

If, by magic, H_v was such that

$$H_{
m v}(x, au) = egin{cases} 1, & x < {\sf a}_0 au \ 0, & x \geqslant {\sf a}_0 au \end{cases}$$
 at $t= au,$

then

$$A(x) = \frac{a_0}{g} \frac{\partial V}{\partial \tau} \left(\frac{x}{a_0}\right)$$

After the facts, new problem statement

Unknown: A(x). Known: g, a_0 and physical measurements:

$$Q(0,t) = \delta_0(t), \qquad H(0,t) = \Lambda(t).$$

Given any τ , calculate the boundary values of virtual causal solutions H_{ν} , Q_{ν} for which

$$H_{v}(x,\tau) = \begin{cases} 1, & x < a_{0}\tau \\ 0, & x \ge a_{0}\tau \end{cases}$$

Then $Q_v(0, t)$ for 0 < t < T recovers A(x) for $0 < x < T/a_0$.

Unique continuation

If \mathscr{H}, \mathscr{Q} satisfy the PDEs on 0 < x < L, $0 < t < 2\tau$ and $\mathscr{H}(0, t) = 2$, $\mathscr{Q}(0, t) = 0$, $0 < t < 2\tau$, then $\mathscr{H}(x, t) = 2$, $\mathscr{Q}(x, t) = 0$ in $x < a_0(\tau - |\tau - t|)$.

Unique continuation to causal solutions

If H_{ν}, Q_{ν} are virtual causal solutions and \mathscr{H}, \mathscr{Q} defined by

$$\begin{split} \mathscr{H}(x,t) &= H_{\nu}(x,t) + H_{\nu}(x,2\tau-t), \quad \mathscr{Q}(x,t) = Q_{\nu}(x,t) - Q_{\nu}(x,2\tau-t) \\ \text{satisfy } \mathscr{H}(0,t) &= 2, \ \mathscr{Q}(0,t) = 0 \text{ on } 0 < t < 2\tau, \text{ then} \end{split}$$

$$H_{\mathsf{v}}(x,\tau) = \frac{1}{2}\mathscr{H}(x,\tau) = \begin{cases} 1, & x < \mathsf{a}_0\tau \\ 0, & x \geqslant \mathsf{a}_0\tau \end{cases}$$

Next?

How to find the suitable H_v , Q_v ?

Integral equation from requirements of \mathscr{H},\mathscr{Q} Measurement:

$$Q(0,t) = \delta_0(t), \quad H(0,t) = \Lambda(t) = \frac{a_0}{gA(0)}(\delta_0(t) + h(t))$$

So $Q(0,t) = Q_{\nu}(0,t) \implies H(0,t) = \Lambda * Q_{\nu}(0,t).$

Let H_v , Q_v be causal solutions such that $\mathscr{H}(0, t) = 2$, $\mathscr{Q}(0, t) = 0$ on $0 < t < 2\tau$. These imply, in terms of Q_v :

$$Q_{\nu}(0,t) + rac{1}{2} \int_{0}^{2 au} Q_{\nu}(0,s) h(|s-t|) ds = rac{gA(0)}{a_0}, \qquad 0 < t < 2 au.$$

Integral equation from requirements of \mathscr{H},\mathscr{Q} Measurement:

$$Q(0,t) = \delta_0(t), \quad H(0,t) = \Lambda(t) = \frac{a_0}{gA(0)}(\delta_0(t) + h(t))$$

So $Q(0,t) = Q_v(0,t) \implies H(0,t) = \Lambda * Q_v(0,t).$

Let H_v , Q_v be causal solutions such that $\mathscr{H}(0, t) = 2$, $\mathscr{Q}(0, t) = 0$ on $0 < t < 2\tau$. These imply, in terms of Q_v :

$$Q_{v}(0,t) + rac{1}{2} \int_{0}^{2 au} Q_{v}(0,s) h(|s-t|) ds = rac{gA(0)}{a_{0}}, \qquad 0 < t < 2 au.$$

Conversely, if Q_v solves the above and H_v is the corresponding pressure head, then

$$H_{
m v}(x, au) = egin{cases} 1, & x < a_0 au \ 0, & x \geqslant a_0 au \end{cases}$$
 at $t= au$

Then $A(a_0\tau) = a_0g^{-1}\partial_\tau \int_0^\tau Q_v(0,t)dt$.

Algorithm

- 1. Input $Q(0, t) = \delta_0(t)$ and for $t < 2T = 2L/a_0$ measure $H(0, t) = \frac{a_0}{gA(0)}(\delta_0(t) + h(t))$
- 2. For whichever $0 < \tau < T$, solve for the boundary value of a virtual causal solution Q_v from

$$Q_{v}(0,t) + rac{1}{2} \int_{0}^{2 au} Q_{v}(0,s) h(|s-t|) ds = rac{gA(0)}{a_{0}}, \quad 0 < t < 2 au$$

3. Set

$$V(\tau) = \int_0^\tau Q_v(0,t) dt \qquad \left(= \int_0^{a_0\tau} \frac{gA(x)}{a_0^2} dx \right)$$

- 4. Repeat 2–3 (on the computer) for many τ to get a good approximation of V
- 5. Given x < L the area can be found by

$$A(x) = \frac{a_0}{g} \left(\frac{\partial}{\partial \tau} V(\tau) \right)_{\tau = x/a_0}$$

Laboratory experiment: setup

Measurement set up by Silvia Meniconi and Bruno Brunone's $\mathsf{group}^1.$

¹Università degli Studi di Perugia, Italy

Laboratory experiment: impulse-response function

Measurement set up by Silvia Meniconi and Bruno Brunone's group².

²Università degli Studi di Perugia, Italy

Reconstruction from measured and processed data

Measurement set up by Silvia Meniconi and Bruno Brunone's group³.

³Università degli Studi di Perugia, Italy

Network

Junction conditions

- H is a scalar: the boundary values H_j are the same at connected pipe ends
- No sinks or sources (total water flowing into pipes sum to zero):

$$\sum_j \nu_j Q_j = 0$$

Main difficulty compared to a segment?

The sets where we can have $H_{\nu}(x, \tau) = 1$.

In which Ω can we force $H_v(x, \tau) = 1$?

Control theory suggests that there are boundary values such that a virtual causal solution H_v can be constructed such that

$$H_{\mathbf{v}}(x, au) = egin{cases} 1, & x \in \Omega \ 0, & x \notin \Omega \end{cases}$$

given any measurable set $\Omega \subset \mathbb{G}$ when \mathbb{G} is a tree and τ large.

In which Ω can we force $H_v(x, \tau) = 1$?

Control theory suggests that there are boundary values such that a virtual causal solution H_v can be constructed such that

$$H_{\mathbf{v}}(x, au) = egin{cases} 1, & x \in \Omega \ 0, & x
otin \Omega \end{cases}$$

given any measurable set $\Omega \subset \mathbb{G}$ when \mathbb{G} is a tree and τ large.

HOWEVER

Can we solve for these boundary values? Is it computationally efficient? Is it even possible?

Admissible domains

This works: cut off a branch!

Needs a matrix of measurements!

Inductive unique continuation

The same logic as before works, but all the equations become more complicated.

Numerical experiment: setup

Numerical experiment: impulse-response matrix $h_{ij}(t) = A(x_j)g/a_0 \cdot k_{ij}(t)$

Reconstruction from measured data using regularization

Danke schön!