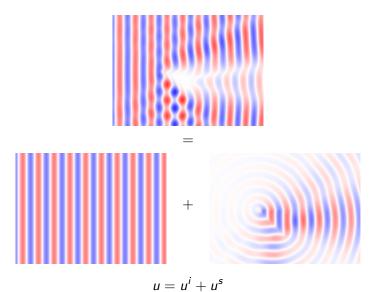
Scattering from corners and other singularities

Emilia Blåsten

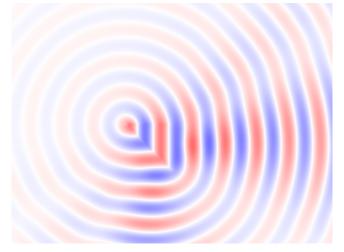
LUT University, Finland

11th Applied Inverse Problems Conference University of Göttingen, Germany September 4, 2024

Scattering theory



Fixed frequency scattering theory: measurements



Measurement: A_{ni} is the far-field pattern of the scattered wave

$$u^{s}(x) = \frac{e^{ik|x|}}{|x|^{(n-1)/2}} A_{u^{i}}\left(\frac{x}{|x|}\right) + \mathcal{O}\left(\frac{1}{|x|^{n/2}}\right)$$

Different inverse scattering problems

Given the far-field map $u^i \mapsto A_{u^i}$, recover the scattering potential V or its support Ω .

Different inverse scattering problems

Given the far-field map $u^i\mapsto A_{u^i}$, recover the scattering potential V or its support Ω .

Solved when

- full far-field map given for all large frequencies (Saito 1984),
- full far-field map given for a single frequency (Sylvester-Uhlmann 1987 3D + Bukhgeim 2007 2D),
- + countless other variations

Different inverse scattering problems

Given the far-field map $u^i\mapsto A_{u^i}$, recover the scattering potential V or its support Ω .

Solved when

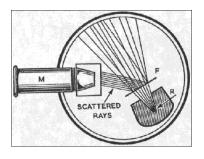
- ▶ full far-field map given for all large frequencies (Saito 1984),
- ► full far-field map given for a single frequency (Sylvester—Uhlmann 1987 3D + Bukhgeim 2007 2D),
- + countless other variations

My focus is on single measurement: A_{u^i} given only for a single u^i .

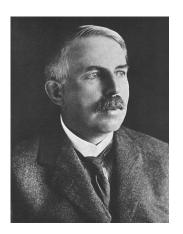
Schiffer's problem: can a single measurement determine Ω ?

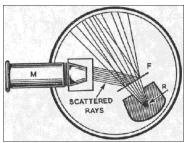
Example: Lord Rutherford's gold-foil experiment

Example: Lord Rutherford's gold-foil experiment

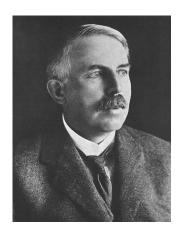


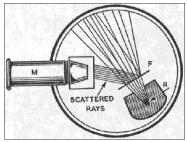
Example: Lord Rutherford's gold-foil experiment





Example: Lord Rutherford's gold-foil experiment

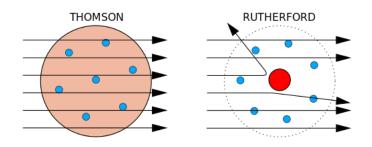




Single incident wave

Scattering theory

Rutherford experiment's conclusions



measurement + a-priori information = conclusion

Also for theoretical reasons, it is very unfortunate if the far-field map is not injective.

Also for theoretical reasons, it is very unfortunate if the far-field map is not injective.

Theorem (B.–Päivärinta–Sylvester CMP 2014)

The potential $V=\chi_{[0,\infty[^n}\varphi,\,\varphi(0)\neq 0]$ always scatters.

Also for theoretical reasons, it is very unfortunate if the far-field map is not injective.

Theorem (B.–Päivärinta–Sylvester CMP 2014)

The potential $V=\chi_{[0,\infty[^n}\varphi,\,\varphi(0)\neq 0]$ always scatters.

For any incident wave $u^i \neq 0$ and wavenumber k > 0 we have $A_{u^i} \neq 0$.

Also for theoretical reasons, it is very unfortunate if the far-field map is not injective.

Theorem (B.–Päivärinta–Sylvester CMP 2014)

The potential $V = \chi_{[0,\infty[^n}\varphi, \varphi(0) \neq 0]$ always scatters.

For any incident wave $u^i \neq 0$ and wavenumber k > 0 we have $A_{u^i} \neq 0$.

However if k is a transmission eigenvalue A_{u^i} can become arbitrarily small with $||u^i|| \ge 1$.

Some follow-up corner scattering results by others

- ▶ Päivärinta–Salo–Vesalainen 2017: 2D any angle, 3D almost any spherical cone
- ► Hu–Salo–Vesalainen 2016: smoothness reduction, new arguments, polygonal scatterer probing
- ► Elschner–Hu 2015, 2018: 3D any domain having two faces meet at an angle, and also curved edges
- ► Liu–Xiao 2017: electromagnetic waves
- free boundary methods:
 - ► Cakoni–Vogelius 2021: border singularities
 - Salo–Shahgholian 2021: analytic boundary non-scattering

Injectivity of the Schiffer's problem for polyhedra

Theorem (Hu-Salo-Vesalainen, Elschner-Hu)

Let P,P' be convex polyhedra and $V=\chi_P\varphi$, $V'=\chi_{P'}\varphi'$ for admissible functions φ,φ' . Then

$$P \neq P' \implies A_{u^i} \neq A'_{u^i} \quad \forall u^i \neq 0$$

Any single incident wave determines P in the class of polyhedral penetrable scatterers.

Injectivity of the Schiffer's problem for polyhedra

Theorem (Hu-Salo-Vesalainen, Elschner-Hu)

Let P,P' be convex polyhedra and $V=\chi_P\varphi$, $V'=\chi_{P'}\varphi'$ for admissible functions φ,φ' . Then

$$P \neq P' \implies A_{u^i} \neq A'_{u^i} \quad \forall u^i \neq 0$$

Any single incident wave determines P in the class of polyhedral penetrable scatterers.

Ikehata's enclosure method (1999) gives roughly the same!

Stability of polygonal scatterer probing

Non-vanishing total wave

Theorem (B.-Liu 2021)

Let u^i be an incident wave and let $V=\chi_P\varphi$, $V'=\chi_{P'}\varphi'$ be admissible with $|u|,|u'|\neq 0$. Then

$$d_H(P, P') \le C(\ln \ln \|A_{u^i} - A'_{u^i}\|_2^{-1})^{-\eta}$$

for some $\eta > 0$.

Stability of polygonal scatterer probing

Non-vanishing total wave

Theorem (B.-Liu 2021)

Let u^i be an incident wave and let $V=\chi_P\varphi$, $V'=\chi_{P'}\varphi'$ be admissible with $|u|,|u'|\neq 0$. Then

$$d_H(P, P') \le C(\ln \ln \|A_{u^i} - A'_{u^i}\|_2^{-1})^{-\eta}$$

for some $\eta > 0$.

Note 1: stability is still unknown without assuming $\left|u\right|,\left|u'\right| \neq 0$.

Note 2: is this the optimal stability??

Lower bound for far-field pattern

Arbitrary Herglotz wave

Theorem (B.-Liu 2017)

Let uⁱ be a normalized Herglotz wave,

$$u^{i}(x) = \int_{\mathbb{S}^{n-1}} e^{ik\theta \cdot x} g(\theta) d\sigma(\theta), \qquad \|g\|_{L^{2}(\mathbb{S}^{n-1})} = 1,$$

and let $V = \chi_P \varphi$ be admissible with x_c a corner of P. Then

$$||A_{u^i}||_{L^2(\mathbb{S}^{n-1})} \ge C_{||P_N||,V} > 0$$

where

$$u^{i}(x_{c}+r\theta)=r^{N}P_{N}(\theta)+\mathcal{O}(r^{N+1}),$$

$$\|P_{N}\|=\int_{\mathbb{S}^{n-1}}|P_{N}(\theta)|\,d\sigma(\theta)>0.$$

Mistake?

F. Cakoni: "Incident waves that approximate transmission eigenfunctions produce arbitrarily small far-field patterns."

From apparent contradiction to inspiration

Theorem (B.-Liu 2017)

Let the potential $V=\chi_{\Omega}\varphi$ be admissible. Let $v,w\neq 0$ be transmission eigenfunctions:

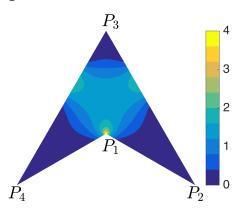
$$(\Delta + k^2)v = 0,$$
 Ω
 $(\Delta + k^2(1+V))w = 0,$ Ω
 $w - v \in H_0^2(\Omega).$

Under C^{α} -smoothness of v near a convex corner x_c we have

$$v(x_c)=w(x_c)=0.$$

Transmission eigenfunction localization

B.-Li-Liu-Wang 2017



Piecewise constant determination

Injectivity of piecewise constant potential probing:

Theorem (B., Liu, 2020)

Let Σ_j , $j=1,2,\ldots$ be bounded convex polyhedra in an admissible geometric arrangement (think pixels/voxels) and $V=\sum_j V_j \chi_{\Sigma_j}$, $V'=\sum_j V_j' \chi_{\Sigma_j}$ for constants $V_j, V_j' \in \mathbb{C}$. Then

$$V \neq V' \implies A_{u^i} \neq A'_{u^i} \quad \forall u^i(x) = e^{ik\theta \cdot x}$$

if k > 0 small or $|u| + |u'| \neq 0$ at each vertex.

A single incident plane wave determines V in the class of discretized penetrable scatterers if the grid is unknown but same for both V and V'.

Proof sketch

Integration by parts

$$\begin{split} k^2 \int_{\Omega} (V-V') u' u_0 dx &= \int_{\partial \Omega} \left((u-u') \partial_{\nu} u_0 - u_0 \partial_{\nu} (u-u') \right) dx \\ \text{if } (\Delta + k^2 (1+V)) u_0 &= 0 \text{ in } \Omega. \end{split}$$

Proof sketch

Integration by parts

Proof sketch

Integration by parts

Hölder estimates give

$$C\left|(V_j-V_j')u'(0)\right|\left|\rho\right|^{-n}=\left|(V_j-V_j')u'(0)\int_{\mathbb{R}^n_+}e^{\rho\cdot x}dx\right|\leq C\left|\rho\right|^{-n-\delta}$$

piecewise constant

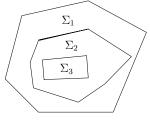
if
$$\|\psi\|_{p} \leq C |\rho|^{-n/p-\varepsilon}$$

Generalizations and limitations

unique determination of corner location and value

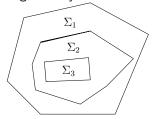
Generalizations and limitations

- unique determination of corner location and value
- if Σ_j might be different for V,V': both $(\Sigma_j)_{j=1}^\infty$ and $V=\sum_j V_j \chi_{\Sigma_j}$ uniquely determined by a single measurement if geometry known to be nested



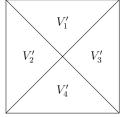
Generalizations and limitations

- unique determination of corner location and value
- if Σ_j might be different for V,V': both $(\Sigma_j)_{j=1}^{\infty}$ and $V=\sum_j V_j \chi_{\Sigma_j}$ uniquely determined by a single measurement if geometry known to be nested



method cannot yet be shown to distinguish between

V_1	V_2
V_3	V_4



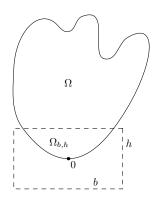
Always scattering

High curvature case

 Ω bounded domain, $0\in\partial\Omega$ admissible K-curvature point.

Theorem (B.–Liu, 2021)

If
$$f = \chi_{\Omega} \varphi$$
, $\varphi \in C^{\alpha}(\mathbb{R}^n)$ and
$$|\varphi(0)| \geq \mathcal{C}(\ln K)^{(n+3)/2} K^{-\delta}$$
then $u_{\infty} \neq 0$ for $(\Delta + k^2)u = f$.



Inverse source problem, Schiffer's problem

$$(\Delta + k^2)u = f = \chi_{\Omega}\varphi, \qquad \lim_{r \to \infty} (\partial_r - ikr)u = 0$$

Can $u_{\infty}(\theta) = c\hat{f}(k\theta)$ determine Ω when k is fixed?

Inverse source problem, Schiffer's problem

$$(\Delta + k^2)u = f = \chi_{\Omega}\varphi, \qquad \lim_{r \to \infty} (\partial_r - ikr)u = 0$$

Can $u_{\infty}(\theta) = c\hat{f}(k\theta)$ determine Ω when k is fixed?

Unique determination:

- ▶ $u_{\infty} = u'_{\infty} \Longrightarrow \Omega = \Omega'$ for convex polyhedral shapes (corner scattering). Assuming non-vanishing total waves, also for elasticity (B.–Lin 2018), electromagnetism (B.–Liu–Xiao 2021),
- $u_{\infty} = u_{\infty}' \Longrightarrow \Omega \approx \Omega'$ for convex polyhedral shapes whose corners have been smoothened to admissible K-curvature points (high curvature scattering, B.–Liu 2021),
- $u_{\infty} = u'_{\infty} \Longrightarrow \Omega \approx \Omega'$ for well-separated collections of small scatterers (small source scattering, B.–Liu 2021).

Non-spherical cones

Potential scattering

Let C be any cone whose cross-section K is star-shaped and $\chi_K \in H^{\tau}(\mathbb{R}^2)$ for some $\tau > 1/2$.

Theorem (B.-Pohjola 2022)

For any $\delta > 0$ there is a cone C_{δ} such that $d_H(C_{\delta}, C) < \delta$ and with the following property: potentials of the form

$$V = \chi_{C_\delta} \varphi$$

where φ is smooth enough (roughly $C^{1/4}$) and non-zero at the vertex always scatter.

Non-spherical cones

Source scattering (easier)

Theorem (B.-Pohjola 2022)

A source $f = \chi_C \varphi$ for $(\Delta + k^2)u = f$ scatters for any k > 0 when φ is smooth enough and non-zero at the vertex of the cone C when

$$\int_{\mathbb{S}^2\cap C} Y_2^m dS \neq 0$$

for $m \in \{-2, -1, 0, +1, +2\}$ and Y_2^m is the spherical harmonic of degree 2. This is true if C fits into a thin enough spherical cone.

Non-spherical cones

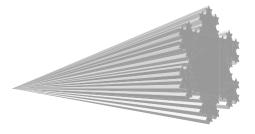
Source scattering (easier)

Theorem (B.-Pohjola 2022)

A source $f = \chi_C \varphi$ for $(\Delta + k^2)u = f$ scatters for any k > 0 when φ is smooth enough and non-zero at the vertex of the cone C when

$$\int_{\mathbb{S}^2\cap C} Y_2^m dS \neq 0$$

for $m \in \{-2, -1, 0, +1, +2\}$ and Y_2^m is the spherical harmonic of degree 2. This is true if C fits into a thin enough spherical cone. "Thin enough" means $\cos \theta \leq 1/\sqrt{3}$. The magic angle is $\approx 54.74^\circ$.



Scattering screens

A flat screen $\Omega=\Omega_0\times\{0\}$ with $\Omega_0\subset\mathbb{R}^2$ simply connected, bounded and smooth. Scattering from such a screen:

$$(\Delta + k^2)u^s = 0,$$
 $\mathbb{R}^3 \setminus \overline{\Omega},$ $u^i + u^s = 0,$ $\Omega,$ $r(\partial_r - ik)u^s \to 0,$ $r = |x| \to \infty.$

Let Ω, Ω' be flat screens, k > 0, u^i an arbitary incident wave, and $u^s, u^{s'}$ corresponding scattered waves.

Theorem (B.-Päivärinta-Sadique 2020)

- If $u^i(x_1, x_2, x_3) + u^i(x_1, x_2, -x_3) \neq 0$ for some x and $u^s_\infty = u^{s'}_\infty$ then $\Omega = \Omega'$.
- If $u^i(x_1, x_2, x_3) + u^i(x_1, x_2, -x_3) = 0$ for all x then $u^s_\infty = u^{s'}_\infty = 0$.

What about the future?

New directions: free boundary methods. Will they solve the problem?

What is the problem?

What about the future?

New directions: free boundary methods. Will they solve the problem?

What is the problem?

What geometric features of a scatterer cause arbitrary

- a) plane waves,
- b) Herglotz or other waves

to give non-trivial scattering?

What about the future?

New directions: free boundary methods. Will they solve the problem?

What is the problem?

What geometric features of a scatterer cause arbitrary

- a) plane waves,
- b) Herglotz or other waves

to give non-trivial scattering?

What guarantees vanishing far-fields?

Thank you!